إدخال مسألة...
ما قبل التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
اطرح من كلا المتعادلين.
خطوة 1.2
أكمل المربع لـ .
خطوة 1.2.1
استخدِم الصيغة لإيجاد قيم و و.
خطوة 1.2.2
ضع في اعتبارك شكل رأس قطع مكافئ.
خطوة 1.2.3
أوجِد قيمة باستخدام القاعدة .
خطوة 1.2.3.1
عوّض بقيمتَي و في القاعدة .
خطوة 1.2.3.2
بسّط الطرف الأيمن.
خطوة 1.2.3.2.1
احذِف العامل المشترك لـ و.
خطوة 1.2.3.2.1.1
أخرِج العامل من .
خطوة 1.2.3.2.1.2
ألغِ العوامل المشتركة.
خطوة 1.2.3.2.1.2.1
أخرِج العامل من .
خطوة 1.2.3.2.1.2.2
ألغِ العامل المشترك.
خطوة 1.2.3.2.1.2.3
أعِد كتابة العبارة.
خطوة 1.2.3.2.2
احذِف العامل المشترك لـ و.
خطوة 1.2.3.2.2.1
أخرِج العامل من .
خطوة 1.2.3.2.2.2
انقُل العدد سالب واحد من قاسم .
خطوة 1.2.3.2.3
اضرب في .
خطوة 1.2.4
أوجِد قيمة باستخدام القاعدة .
خطوة 1.2.4.1
عوّض بقيم و و في القاعدة .
خطوة 1.2.4.2
بسّط الطرف الأيمن.
خطوة 1.2.4.2.1
بسّط كل حد.
خطوة 1.2.4.2.1.1
ارفع إلى القوة .
خطوة 1.2.4.2.1.2
اضرب في .
خطوة 1.2.4.2.1.3
اقسِم على .
خطوة 1.2.4.2.1.4
اضرب في .
خطوة 1.2.4.2.2
أضف و.
خطوة 1.2.5
عوّض بقيم و و في شكل الرأس .
خطوة 1.3
استبدِل بـ في المعادلة .
خطوة 1.4
انقُل إلى المتعادل الأيمن بإضافة إلى كلا الطرفين.
خطوة 1.5
أكمل المربع لـ .
خطوة 1.5.1
استخدِم الصيغة لإيجاد قيم و و.
خطوة 1.5.2
ضع في اعتبارك شكل رأس قطع مكافئ.
خطوة 1.5.3
أوجِد قيمة باستخدام القاعدة .
خطوة 1.5.3.1
عوّض بقيمتَي و في القاعدة .
خطوة 1.5.3.2
بسّط الطرف الأيمن.
خطوة 1.5.3.2.1
احذِف العامل المشترك لـ و.
خطوة 1.5.3.2.1.1
أخرِج العامل من .
خطوة 1.5.3.2.1.2
ألغِ العوامل المشتركة.
خطوة 1.5.3.2.1.2.1
أخرِج العامل من .
خطوة 1.5.3.2.1.2.2
ألغِ العامل المشترك.
خطوة 1.5.3.2.1.2.3
أعِد كتابة العبارة.
خطوة 1.5.3.2.2
احذِف العامل المشترك لـ و.
خطوة 1.5.3.2.2.1
أخرِج العامل من .
خطوة 1.5.3.2.2.2
ألغِ العوامل المشتركة.
خطوة 1.5.3.2.2.2.1
أخرِج العامل من .
خطوة 1.5.3.2.2.2.2
ألغِ العامل المشترك.
خطوة 1.5.3.2.2.2.3
أعِد كتابة العبارة.
خطوة 1.5.3.2.2.2.4
اقسِم على .
خطوة 1.5.4
أوجِد قيمة باستخدام القاعدة .
خطوة 1.5.4.1
عوّض بقيم و و في القاعدة .
خطوة 1.5.4.2
بسّط الطرف الأيمن.
خطوة 1.5.4.2.1
بسّط كل حد.
خطوة 1.5.4.2.1.1
ارفع إلى القوة .
خطوة 1.5.4.2.1.2
اضرب في .
خطوة 1.5.4.2.1.3
اقسِم على .
خطوة 1.5.4.2.1.4
اضرب في .
خطوة 1.5.4.2.2
اطرح من .
خطوة 1.5.5
عوّض بقيم و و في شكل الرأس .
خطوة 1.6
استبدِل بـ في المعادلة .
خطوة 1.7
انقُل إلى المتعادل الأيمن بإضافة إلى كلا الطرفين.
خطوة 1.8
بسّط .
خطوة 1.8.1
اطرح من .
خطوة 1.8.2
أضف و.
خطوة 1.9
اعكس العلامة في كل حد من حدود المعادلة بحيث يصبح الحد الموجود على الجانب الأيمن موجبًا.
خطوة 1.10
اقسِم كل حد على ليصبح الطرف الأيمن مساويًا لواحد.
خطوة 1.11
بسّط كل حد في المعادلة لتعيين قيمة الطرف الأيمن بحيث تصبح مساوية لـ . تتطلب الصيغة القياسية للقطع الناقص أو القطع الزائد أن يكون المتعادل الأيمن .
خطوة 2
هذه الصيغة هي صيغة القطع الزائد. استخدِم هذه الصيغة لتحديد القيم المُستخدمة لإيجاد خطوط تقارب القطع الزائد.
خطوة 3
طابِق القيم الموجودة في هذا القطع الزائد بقيم الصيغة القياسية. يمثل المتغير الإزاحة الأفقية x عن نقطة الأصل، ويمثل الإزاحة الرأسية y عن نقطة الأصل، .
خطوة 4
تتبع خطوط التقارب الصيغة لأن هذا القطع الزائد مفتوح على اليسار واليمين.
خطوة 5
خطوة 5.1
احذِف الأقواس.
خطوة 5.2
بسّط .
خطوة 5.2.1
بسّط كل حد.
خطوة 5.2.1.1
اضرب في .
خطوة 5.2.1.2
طبّق خاصية التوزيع.
خطوة 5.2.1.3
اجمع و.
خطوة 5.2.1.4
ألغِ العامل المشترك لـ .
خطوة 5.2.1.4.1
أخرِج العامل من .
خطوة 5.2.1.4.2
ألغِ العامل المشترك.
خطوة 5.2.1.4.3
أعِد كتابة العبارة.
خطوة 5.2.1.5
اضرب في .
خطوة 5.2.2
جمّع الحدود المتعاكسة في .
خطوة 5.2.2.1
أضف و.
خطوة 5.2.2.2
أضف و.
خطوة 6
خطوة 6.1
احذِف الأقواس.
خطوة 6.2
بسّط .
خطوة 6.2.1
بسّط كل حد.
خطوة 6.2.1.1
اضرب في .
خطوة 6.2.1.2
طبّق خاصية التوزيع.
خطوة 6.2.1.3
اجمع و.
خطوة 6.2.1.4
ألغِ العامل المشترك لـ .
خطوة 6.2.1.4.1
انقُل السالب الرئيسي في إلى بسط الكسر.
خطوة 6.2.1.4.2
أخرِج العامل من .
خطوة 6.2.1.4.3
ألغِ العامل المشترك.
خطوة 6.2.1.4.4
أعِد كتابة العبارة.
خطوة 6.2.1.5
اضرب في .
خطوة 6.2.1.6
انقُل إلى يسار .
خطوة 6.2.2
أضف و.
خطوة 7
يحتوي هذا القطع الزائد على خطي تقارب.
خطوة 8
خطا التقارب هما و.
خطوط التقارب:
خطوة 9