إدخال مسألة...
ما قبل التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
بسّط .
خطوة 1.1.1
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 1.1.2
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 1.1.3
اكتب كل عبارة قاسمها المشترك ، بضربها في العامل المناسب للعدد .
خطوة 1.1.3.1
اضرب في .
خطوة 1.1.3.2
اضرب في .
خطوة 1.1.3.3
اضرب في .
خطوة 1.1.3.4
اضرب في .
خطوة 1.1.4
اجمع البسوط على القاسم المشترك.
خطوة 1.1.5
بسّط بَسْط الكسر.
خطوة 1.1.5.1
انقُل إلى يسار .
خطوة 1.1.5.2
طبّق خاصية التوزيع.
خطوة 1.1.5.3
اضرب في .
خطوة 1.1.5.4
طبّق خاصية التوزيع.
خطوة 1.1.5.5
اضرب في .
خطوة 1.1.5.6
اضرب في .
خطوة 1.2
اضرب كلا الطرفين في .
خطوة 1.3
بسّط.
خطوة 1.3.1
بسّط الطرف الأيسر.
خطوة 1.3.1.1
ألغِ العامل المشترك لـ .
خطوة 1.3.1.1.1
ألغِ العامل المشترك.
خطوة 1.3.1.1.2
أعِد كتابة العبارة.
خطوة 1.3.2
بسّط الطرف الأيمن.
خطوة 1.3.2.1
اضرب في .
خطوة 1.4
أوجِد قيمة .
خطوة 1.4.1
انقُل كل الحدود التي لا تحتوي على إلى المتعادل الأيمن.
خطوة 1.4.1.1
اطرح من كلا المتعادلين.
خطوة 1.4.1.2
أضف إلى كلا المتعادلين.
خطوة 1.4.1.3
أضف و.
خطوة 1.4.2
اقسِم كل حد في على وبسّط.
خطوة 1.4.2.1
اقسِم كل حد في على .
خطوة 1.4.2.2
بسّط الطرف الأيسر.
خطوة 1.4.2.2.1
ألغِ العامل المشترك لـ .
خطوة 1.4.2.2.1.1
ألغِ العامل المشترك.
خطوة 1.4.2.2.1.2
اقسِم على .
خطوة 1.4.2.3
بسّط الطرف الأيمن.
خطوة 1.4.2.3.1
بسّط كل حد.
خطوة 1.4.2.3.1.1
قسمة قيمتين سالبتين على بعضهما البعض ينتج عنها قيمة موجبة.
خطوة 1.4.2.3.1.2
اقسِم على .
خطوة 1.5
أعِد ترتيب الحدود.
خطوة 2
استخدِم صيغة الرأس، ، لتحديد قيم و و.
خطوة 3
بما أن قيمة موجبة، إذن القطع المكافئ مفتوح إلى أعلى.
مفتوح إلى أعلى
خطوة 4
أوجِد الرأس .
خطوة 5
خطوة 5.1
أوجِد المسافة من الرأس إلى بؤرة القطع المكافئ باستخدام القاعدة التالية.
خطوة 5.2
عوّض بقيمة في القاعدة.
خطوة 5.3
بسّط.
خطوة 5.3.1
اجمع و.
خطوة 5.3.2
بسّط العبارة.
خطوة 5.3.2.1
اضرب في .
خطوة 5.3.2.2
اقسِم على .
خطوة 6
خطوة 6.1
يمكن إيجاد بؤرة القطع المكافئ بجمع مع الإحداثي الصادي إذا كان القطع المكافئ مفتوحًا إلى أعلى أو إلى أسفل.
خطوة 6.2
عوّض بقيم و و المعروفة في القاعدة وبسّط.
خطوة 7
أوجِد محور التناظر بإيجاد الخط الذي يمر عبر الرأس والبؤرة.
خطوة 8
خطوة 8.1
دليل القطع المكافئ هو الخط الأفقي الذي يمكن إيجاده بطرح من الإحداثي الصادي للرأس إذا كان القطع المكافئ مفتوح إلى أعلى أو إلى أسفل.
خطوة 8.2
عوّض بقيمتَي و المعروفتين في القاعدة وبسّط.
خطوة 9
استخدِم خصائص القطع المكافئ لتحليل القطع المكافئ وتمثيله بيانيًا.
الاتجاه: مفتوح للأعلى
الرأس:
البؤرة:
محور التناظر:
الدليل:
خطوة 10