حساب التفاضل والتكامل الأمثلة

أوجد أين يكون المشتق متزايد أو متناقص f(x)=x^(2/3)-x
خطوة 1
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.2
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.1
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.2.2
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 1.1.2.3
اجمع و.
خطوة 1.1.2.4
اجمع البسوط على القاسم المشترك.
خطوة 1.1.2.5
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.5.1
اضرب في .
خطوة 1.1.2.5.2
اطرح من .
خطوة 1.1.2.6
انقُل السالب أمام الكسر.
خطوة 1.1.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.3.3
اضرب في .
خطوة 1.1.4
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.4.1
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
خطوة 1.1.4.2
اضرب في .
خطوة 1.2
المشتق الأول لـ بالنسبة إلى هو .
خطوة 2
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ ثم أوجِد حل المعادلة .
انقر لعرض المزيد من الخطوات...
خطوة 2.1
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ .
خطوة 2.2
أضف إلى كلا المتعادلين.
خطوة 2.3
أوجِد القاسم المشترك الأصغر للحدود في المعادلة.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
يُعد إيجاد القاسم المشترك الأصغر لقائمة القيم بمثابة إيجاد المضاعف المشترك الأصغر لقواسم تلك القيم.
خطوة 2.3.2
المضاعف المشترك الأصغر لإحدى العبارات ولأي منها هو العبارة.
خطوة 2.4
اضرب كل حد في في لحذف الكسور.
انقر لعرض المزيد من الخطوات...
خطوة 2.4.1
اضرب كل حد في في .
خطوة 2.4.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.4.2.1
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 2.4.2.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 2.4.2.2.1
ألغِ العامل المشترك.
خطوة 2.4.2.2.2
أعِد كتابة العبارة.
خطوة 2.4.2.3
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 2.4.2.3.1
ألغِ العامل المشترك.
خطوة 2.4.2.3.2
أعِد كتابة العبارة.
خطوة 2.4.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 2.4.3.1
اضرب في .
خطوة 2.5
أوجِد حل المعادلة.
انقر لعرض المزيد من الخطوات...
خطوة 2.5.1
أعِد كتابة المعادلة في صورة .
خطوة 2.5.2
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.5.2.1
اقسِم كل حد في على .
خطوة 2.5.2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.5.2.2.1
ألغِ العامل المشترك.
خطوة 2.5.2.2.2
اقسِم على .
خطوة 2.5.3
ارفع كل متعادل إلى القوة لحذف الأُس الكسري في الطرف الأيسر.
خطوة 2.5.4
بسّط الأُس.
انقر لعرض المزيد من الخطوات...
خطوة 2.5.4.1
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.5.4.1.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 2.5.4.1.1.1
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 2.5.4.1.1.1.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 2.5.4.1.1.1.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 2.5.4.1.1.1.2.1
ألغِ العامل المشترك.
خطوة 2.5.4.1.1.1.2.2
أعِد كتابة العبارة.
خطوة 2.5.4.1.1.2
بسّط.
خطوة 2.5.4.2
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 2.5.4.2.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 2.5.4.2.1.1
طبّق قاعدة الضرب على .
خطوة 2.5.4.2.1.2
ارفع إلى القوة .
خطوة 2.5.4.2.1.3
ارفع إلى القوة .
خطوة 3
القيم التي تجعل المشتق مساويًا لـ هي .
خطوة 4
أوجِد الموضع الذي يكون فيه المشتق غير معرّف.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
حوّل العبارات ذات الأُسس الكسرية إلى جذور.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.1
طبّق القاعدة لإعادة كتابة الأُس في صورة جذر.
خطوة 4.1.2
ناتج رفع أي عدد إلى يساوي الأساس نفسه.
خطوة 4.2
عيّن قيمة القاسم في بحيث تصبح مساوية لـ لإيجاد الموضع الذي تكون فيه العبارة غير معرّفة.
خطوة 4.3
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 4.3.1
لحذف الجذر في المتعادل الأيسر، كعِّب كلا المتعادلين.
خطوة 4.3.2
بسّط كل متعادل.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.2.1
استخدِم لكتابة في صورة .
خطوة 4.3.2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.2.2.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 4.3.2.2.1.1
طبّق قاعدة الضرب على .
خطوة 4.3.2.2.1.2
ارفع إلى القوة .
خطوة 4.3.2.2.1.3
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 4.3.2.2.1.3.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 4.3.2.2.1.3.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.3.2.2.1.3.2.1
ألغِ العامل المشترك.
خطوة 4.3.2.2.1.3.2.2
أعِد كتابة العبارة.
خطوة 4.3.2.2.1.4
بسّط.
خطوة 4.3.2.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.2.3.1
ينتج عن رفع إلى أي قوة موجبة.
خطوة 4.3.3
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.3.1
اقسِم كل حد في على .
خطوة 4.3.3.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.3.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.3.3.2.1.1
ألغِ العامل المشترك.
خطوة 4.3.3.2.1.2
اقسِم على .
خطوة 4.3.3.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.3.3.1
اقسِم على .
خطوة 5
قسّم إلى فترات منفصلة حول قيم التي تجعل المشتق يساوي أو التي تجعله غير معرّف.
خطوة 6
عوّض بقيمة من الفترة في المشتق لتحديد ما إذا كانت الدالة تتزايد أم تتناقص.
انقر لعرض المزيد من الخطوات...
خطوة 6.1
استبدِل المتغير بـ في العبارة.
خطوة 6.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.1.1
بسّط القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.1.1.1
أعِد كتابة بالصيغة .
خطوة 6.2.1.1.2
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 6.2.1.1.3
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 6.2.1.1.3.1
ألغِ العامل المشترك.
خطوة 6.2.1.1.3.2
أعِد كتابة العبارة.
خطوة 6.2.1.1.4
احسِب قيمة الأُس.
خطوة 6.2.1.2
اضرب في .
خطوة 6.2.1.3
انقُل السالب أمام الكسر.
خطوة 6.2.2
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 6.2.3
اجمع و.
خطوة 6.2.4
اجمع البسوط على القاسم المشترك.
خطوة 6.2.5
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.5.1
اضرب في .
خطوة 6.2.5.2
اطرح من .
خطوة 6.2.6
انقُل السالب أمام الكسر.
خطوة 6.2.7
الإجابة النهائية هي .
خطوة 6.3
المشتق في هو . نظرًا إلى أن هذا سالب، فإن الدالة تتناقص خلال .
تناقص خلال حيث إن
تناقص خلال حيث إن
خطوة 7
عوّض بقيمة من الفترة في المشتق لتحديد ما إذا كانت الدالة تتزايد أم تتناقص.
انقر لعرض المزيد من الخطوات...
خطوة 7.1
استبدِل المتغير بـ في العبارة.
خطوة 7.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 7.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 7.2.1.1
ارفع إلى القوة .
خطوة 7.2.1.2
اضرب في .
خطوة 7.2.1.3
اقسِم على .
خطوة 7.2.2
اطرح من .
خطوة 7.2.3
الإجابة النهائية هي .
خطوة 7.3
المشتق في هو . نظرًا إلى أن هذا موجب، فإن الدالة تتزايد خلال .
تزايد خلال نظرًا إلى أن
تزايد خلال نظرًا إلى أن
خطوة 8
عوّض بقيمة من الفترة في المشتق لتحديد ما إذا كانت الدالة تتزايد أم تتناقص.
انقر لعرض المزيد من الخطوات...
خطوة 8.1
استبدِل المتغير بـ في العبارة.
خطوة 8.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 8.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 8.2.1.1
ارفع إلى القوة .
خطوة 8.2.1.2
اضرب في .
خطوة 8.2.1.3
اقسِم على .
خطوة 8.2.2
اطرح من .
خطوة 8.2.3
الإجابة النهائية هي .
خطوة 8.3
المشتق في هو . نظرًا إلى أن هذا سالب، فإن الدالة تتناقص خلال .
تناقص خلال حيث إن
تناقص خلال حيث إن
خطوة 9
اسرِد الفترات التي تتزايد الدالة وتتناقص فيها.
تزايد خلال:
تناقص خلال:
خطوة 10