إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 2
خطوة 2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3
استبدِل كافة حالات حدوث بـ .
خطوة 3
خطوة 3.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.2
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 3.3
أضف و.
خطوة 3.4
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.5
اضرب في .
خطوة 3.6
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.7
اضرب في .
خطوة 4
خطوة 4.1
طبّق خاصية التوزيع.
خطوة 4.2
طبّق خاصية التوزيع.
خطوة 4.3
جمّع الحدود.
خطوة 4.3.1
اضرب في .
خطوة 4.3.2
اضرب في .
خطوة 4.3.3
اضرب في بجمع الأُسس.
خطوة 4.3.3.1
انقُل .
خطوة 4.3.3.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 4.3.3.3
أضف و.
خطوة 4.4
أعِد ترتيب الحدود.
خطوة 5
أعِد كتابة بالصيغة .
خطوة 6
خطوة 6.1
طبّق خاصية التوزيع.
خطوة 6.2
طبّق خاصية التوزيع.
خطوة 6.3
طبّق خاصية التوزيع.
خطوة 7
خطوة 7.1
بسّط كل حد.
خطوة 7.1.1
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 7.1.2
اضرب في بجمع الأُسس.
خطوة 7.1.2.1
انقُل .
خطوة 7.1.2.2
اضرب في .
خطوة 7.1.3
اضرب في .
خطوة 7.1.4
اضرب في .
خطوة 7.1.5
اضرب في .
خطوة 7.1.6
اضرب في .
خطوة 7.2
اطرح من .
خطوة 8
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 9
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 10
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 11
اضرب في .
خطوة 12
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 13
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 14
اضرب في .
خطوة 15
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 16
أضف و.