إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
خُذ نهاية بسط الكسر ونهاية القاسم.
خطوة 1.2
احسِب قيمة حد بسط الكسر.
خطوة 1.2.1
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 1.2.2
انقُل النهاية إلى الأُس.
خطوة 1.2.3
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 1.2.4
احسِب قيم الحدود بالتعويض عن جميع حالات حدوث بـ .
خطوة 1.2.4.1
احسِب قيمة حد بالتعويض عن بـ .
خطوة 1.2.4.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 1.2.5
بسّط الإجابة.
خطوة 1.2.5.1
بسّط كل حد.
خطوة 1.2.5.1.1
أي شيء مرفوع إلى هو .
خطوة 1.2.5.1.2
اضرب في .
خطوة 1.2.5.2
أضف و.
خطوة 1.2.5.3
اطرح من .
خطوة 1.3
احسِب قيمة حد القاسم.
خطوة 1.3.1
احسِب قيمة النهاية.
خطوة 1.3.1.1
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 1.3.1.2
انقُل النهاية داخل الدالة المثلثية نظرًا إلى أن دالة جيب التمام متصلة.
خطوة 1.3.1.3
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 1.3.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 1.3.3
بسّط الإجابة.
خطوة 1.3.3.1
بسّط كل حد.
خطوة 1.3.3.1.1
القيمة الدقيقة لـ هي .
خطوة 1.3.3.1.2
اضرب في .
خطوة 1.3.3.2
اطرح من .
خطوة 1.3.3.3
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 1.3.4
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 1.4
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 2
بما أن مكتوبة بصيغة غير معيّنة، طبّق قاعدة لوبيتال. تنص قاعدة لوبيتال على أن نهاية ناتج قسمة الدوال يساوي نهاية ناتج قسمة مشتقاتها.
خطوة 3
خطوة 3.1
أوجِد مشتقة البسط والقاسم.
خطوة 3.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.3
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 3.4
احسِب قيمة .
خطوة 3.4.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.4.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.4.3
اضرب في .
خطوة 3.5
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 3.6
أضف و.
خطوة 3.7
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.8
مشتق بالنسبة إلى يساوي .
خطوة 3.9
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 3.10
أضف و.
خطوة 4
خطوة 4.1
احسِب قيمة حد بسط الكسر وحد القاسم.
خطوة 4.1.1
خُذ نهاية بسط الكسر ونهاية القاسم.
خطوة 4.1.2
احسِب قيمة حد بسط الكسر.
خطوة 4.1.2.1
احسِب قيمة النهاية.
خطوة 4.1.2.1.1
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 4.1.2.1.2
انقُل النهاية إلى الأُس.
خطوة 4.1.2.1.3
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 4.1.2.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 4.1.2.3
بسّط الإجابة.
خطوة 4.1.2.3.1
بسّط كل حد.
خطوة 4.1.2.3.1.1
أي شيء مرفوع إلى هو .
خطوة 4.1.2.3.1.2
اضرب في .
خطوة 4.1.2.3.2
اطرح من .
خطوة 4.1.3
احسِب قيمة حد القاسم.
خطوة 4.1.3.1
احسِب قيمة النهاية.
خطوة 4.1.3.1.1
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 4.1.3.1.2
انقُل النهاية داخل الدالة المثلثية نظرًا إلى أن دالة الجيب متصلة.
خطوة 4.1.3.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 4.1.3.3
بسّط الإجابة.
خطوة 4.1.3.3.1
القيمة الدقيقة لـ هي .
خطوة 4.1.3.3.2
اضرب في .
خطوة 4.1.3.3.3
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 4.1.3.4
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 4.1.4
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 4.2
بما أن مكتوبة بصيغة غير معيّنة، طبّق قاعدة لوبيتال. تنص قاعدة لوبيتال على أن نهاية ناتج قسمة الدوال يساوي نهاية ناتج قسمة مشتقاتها.
خطوة 4.3
أوجِد مشتق بسط الكسر والقاسم.
خطوة 4.3.1
أوجِد مشتقة البسط والقاسم.
خطوة 4.3.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 4.3.3
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 4.3.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 4.3.5
أضف و.
خطوة 4.3.6
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 4.3.7
مشتق بالنسبة إلى يساوي .
خطوة 5
خطوة 5.1
قسّم النهاية بتطبيق قاعدة قسمة النهايات على النهاية بينما يقترب من .
خطوة 5.2
انقُل النهاية إلى الأُس.
خطوة 5.3
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 5.4
انقُل النهاية داخل الدالة المثلثية نظرًا إلى أن دالة جيب التمام متصلة.
خطوة 6
خطوة 6.1
احسِب قيمة حد بالتعويض عن بـ .
خطوة 6.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 7
خطوة 7.1
افصِل الكسور.
خطوة 7.2
حوّل من إلى .
خطوة 7.3
انقُل العدد سالب واحد من قاسم .
خطوة 7.4
أعِد كتابة بالصيغة .
خطوة 7.5
أي شيء مرفوع إلى هو .
خطوة 7.6
اضرب في .
خطوة 7.7
القيمة الدقيقة لـ هي .
خطوة 7.8
اضرب في .