حساب التفاضل والتكامل الأمثلة

حوّل إلى صيغة مثلثية (1/2(cos(pi/7)+isin(pi/7)))^7
خطوة 1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
احسِب قيمة .
خطوة 1.2
احسِب قيمة .
خطوة 1.3
انقُل إلى يسار .
خطوة 2
بسّط الحدود.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
طبّق خاصية التوزيع.
خطوة 2.2
اجمع و.
خطوة 3
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 3.1
اجمع و.
خطوة 3.2
اجمع و.
خطوة 4
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
اقسِم على .
خطوة 4.2
أخرِج العامل من .
خطوة 4.3
أخرِج العامل من .
خطوة 4.4
افصِل الكسور.
خطوة 4.5
اقسِم على .
خطوة 4.6
اقسِم على .
خطوة 5
استخدِم مبرهنة ذات الحدين.
خطوة 6
بسّط الحدود.
انقر لعرض المزيد من الخطوات...
خطوة 6.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 6.1.1
ارفع إلى القوة .
خطوة 6.1.2
ارفع إلى القوة .
خطوة 6.1.3
اضرب في .
خطوة 6.1.4
اضرب في .
خطوة 6.1.5
ارفع إلى القوة .
خطوة 6.1.6
اضرب في .
خطوة 6.1.7
طبّق قاعدة الضرب على .
خطوة 6.1.8
ارفع إلى القوة .
خطوة 6.1.9
أعِد كتابة بالصيغة .
خطوة 6.1.10
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 6.1.10.1
اضرب في .
خطوة 6.1.10.2
اضرب في .
خطوة 6.1.11
ارفع إلى القوة .
خطوة 6.1.12
اضرب في .
خطوة 6.1.13
طبّق قاعدة الضرب على .
خطوة 6.1.14
ارفع إلى القوة .
خطوة 6.1.15
أخرِج عامل .
خطوة 6.1.16
أعِد كتابة بالصيغة .
خطوة 6.1.17
أعِد كتابة بالصيغة .
خطوة 6.1.18
اضرب في .
خطوة 6.1.19
اضرب في .
خطوة 6.1.20
ارفع إلى القوة .
خطوة 6.1.21
اضرب في .
خطوة 6.1.22
طبّق قاعدة الضرب على .
خطوة 6.1.23
ارفع إلى القوة .
خطوة 6.1.24
أعِد كتابة بالصيغة .
انقر لعرض المزيد من الخطوات...
خطوة 6.1.24.1
أعِد كتابة بالصيغة .
خطوة 6.1.24.2
أعِد كتابة بالصيغة .
خطوة 6.1.24.3
ارفع إلى القوة .
خطوة 6.1.25
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 6.1.25.1
اضرب في .
خطوة 6.1.25.2
اضرب في .
خطوة 6.1.26
ارفع إلى القوة .
خطوة 6.1.27
اضرب في .
خطوة 6.1.28
طبّق قاعدة الضرب على .
خطوة 6.1.29
ارفع إلى القوة .
خطوة 6.1.30
أخرِج عامل .
خطوة 6.1.31
أعِد كتابة بالصيغة .
انقر لعرض المزيد من الخطوات...
خطوة 6.1.31.1
أعِد كتابة بالصيغة .
خطوة 6.1.31.2
أعِد كتابة بالصيغة .
خطوة 6.1.31.3
ارفع إلى القوة .
خطوة 6.1.32
اضرب في .
خطوة 6.1.33
اضرب في .
خطوة 6.1.34
اضرب في .
خطوة 6.1.35
طبّق قاعدة الضرب على .
خطوة 6.1.36
ارفع إلى القوة .
خطوة 6.1.37
أخرِج عامل .
خطوة 6.1.38
أعِد كتابة بالصيغة .
انقر لعرض المزيد من الخطوات...
خطوة 6.1.38.1
أعِد كتابة بالصيغة .
خطوة 6.1.38.2
أعِد كتابة بالصيغة .
خطوة 6.1.38.3
ارفع إلى القوة .
خطوة 6.1.39
اضرب في .
خطوة 6.1.40
أعِد كتابة بالصيغة .
خطوة 6.1.41
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 6.1.41.1
اضرب في .
خطوة 6.1.41.2
اضرب في .
خطوة 6.1.42
طبّق قاعدة الضرب على .
خطوة 6.1.43
ارفع إلى القوة .
خطوة 6.1.44
أعِد كتابة بالصيغة .
انقر لعرض المزيد من الخطوات...
خطوة 6.1.44.1
أخرِج عامل .
خطوة 6.1.44.2
أخرِج عامل .
خطوة 6.1.45
أعِد كتابة بالصيغة .
انقر لعرض المزيد من الخطوات...
خطوة 6.1.45.1
أعِد كتابة بالصيغة .
خطوة 6.1.45.2
أعِد كتابة بالصيغة .
خطوة 6.1.45.3
ارفع إلى القوة .
خطوة 6.1.46
اضرب في .
خطوة 6.1.47
أعِد كتابة بالصيغة .
خطوة 6.1.48
أعِد كتابة بالصيغة .
خطوة 6.1.49
اضرب في .
خطوة 6.2
بسّط بجمع الحدود.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.1
اطرح من .
خطوة 6.2.2
بسّط عن طريق الجمع والطرح.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.2.1
أضف و.
خطوة 6.2.2.2
اطرح من .
خطوة 6.2.3
اطرح من .
خطوة 6.2.4
أضف و.
خطوة 6.2.5
اطرح من .
خطوة 7
هذه هي الصيغة المثلثية للعدد المركب وبها يمثل المقياس و يمثل الزاوية الناشئة في المستوى العقدي.
خطوة 8
مقياس العدد المركب يمثل طول المسافة بين العدد المركب ونقطة الأصل في المستوى المركب.
حيث
خطوة 9
عوّض بالقيمتين الفعليتين لـ و.
خطوة 10
أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 10.1
ارفع إلى القوة .
خطوة 10.2
ارفع إلى القوة .
خطوة 10.3
أضف و.
خطوة 11
احسِب قيمة الجذر.
خطوة 12
زاوية النقطة على المستوى العقدي هي المماس العكسي لجزء العدد المركب على الجزء الحقيقي.
خطوة 13
بما أن دالة المماس العكسية لـ ينتج عنها وجود زاوية في الربع الثالث، إذن قيمة الزاوية تساوي .
خطوة 14
عوّض بقيمتَي و.