إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
,
خطوة 1
خطوة 1.1
أوجِد المشتق الأول.
خطوة 1.1.1
أوجِد المشتق الأول.
خطوة 1.1.1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.1.2
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 1.1.1.3
احسِب قيمة .
خطوة 1.1.1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.1.3.3
اضرب في .
خطوة 1.1.2
المشتق الأول لـ بالنسبة إلى هو .
خطوة 1.2
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ ثم أوجِد حل المعادلة .
خطوة 1.2.1
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ .
خطوة 1.2.2
أضف إلى كلا المتعادلين.
خطوة 1.2.3
خُذ اللوغاريتم الطبيعي لكلا المتعادلين لحذف المتغير من الأُس.
خطوة 1.2.4
وسّع الطرف الأيسر.
خطوة 1.2.4.1
وسّع بنقل خارج اللوغاريتم.
خطوة 1.2.4.2
اللوغاريتم الطبيعي لـ يساوي .
خطوة 1.2.4.3
اضرب في .
خطوة 1.2.5
اللوغاريتم الطبيعي لـ يساوي .
خطوة 1.3
أوجِد القيم التي يكون عندها المشتق غير معرّف.
خطوة 1.3.1
نطاق العبارة هو جميع الأعداد الحقيقية ما عدا ما يجعل العبارة غير معرّفة. في هذه الحالة، لا يوجد عدد حقيقي يجعل العبارة غير معرّفة.
خطوة 1.4
احسِب قيمة عند كل قيمة يكون عندها المشتق مساويًا لـ أو غير معرّف.
خطوة 1.4.1
احسِب القيمة في .
خطوة 1.4.1.1
عوّض بقيمة التي تساوي .
خطوة 1.4.1.2
بسّط.
خطوة 1.4.1.2.1
أي شيء مرفوع إلى هو .
خطوة 1.4.1.2.2
اطرح من .
خطوة 1.4.2
اسرِد جميع النقاط.
خطوة 2
خطوة 2.1
احسِب القيمة في .
خطوة 2.1.1
عوّض بقيمة التي تساوي .
خطوة 2.1.2
بسّط كل حد.
خطوة 2.1.2.1
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
خطوة 2.1.2.2
اضرب في .
خطوة 2.2
احسِب القيمة في .
خطوة 2.2.1
عوّض بقيمة التي تساوي .
خطوة 2.2.2
اضرب في .
خطوة 2.3
اسرِد جميع النقاط.
خطوة 3
قارن قيم الموجودة لكل قيمة من قيم من أجل تحديد الحد الأقصى والحد الأدنى المطلق على مدى الفترة الزمنية المحددة. سيظهر الحد الأقصى بأعلى قيمة وسيظهر الحد الأدنى بأقل قيمة .
الحد الأقصى المطلق:
الحد الأدنى المطلق:
خطوة 4