حساب التفاضل والتكامل الأمثلة

خطوة 1
اكتب في صورة دالة.
خطوة 2
Find the values where the second derivative is equal to .
انقر لعرض المزيد من الخطوات...
خطوة 2.1
أوجِد المشتق الثاني.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.1.1.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 2.1.1.2.2
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 2.1.1.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 2.1.1.3
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.1.1.3.2
اجمع الكسور.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1.3.2.1
اضرب في .
خطوة 2.1.1.3.2.2
اضرب في .
خطوة 2.1.1.3.2.3
اجمع و.
خطوة 2.1.1.3.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.1.1.3.4
بسّط الحدود.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1.3.4.1
اجمع و.
خطوة 2.1.1.3.4.2
اجمع و.
خطوة 2.1.1.3.4.3
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1.3.4.3.1
ألغِ العامل المشترك.
خطوة 2.1.1.3.4.3.2
اقسِم على .
خطوة 2.1.1.3.4.4
أعِد ترتيب العوامل في .
خطوة 2.1.2
أوجِد المشتق الثاني.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.1
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 2.1.2.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 2.1.2.2.2
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 2.1.2.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 2.1.2.3
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.1.2.3.2
اجمع الكسور.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.3.2.1
اجمع و.
خطوة 2.1.2.3.2.2
اجمع و.
خطوة 2.1.2.3.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.1.2.3.4
اجمع الكسور.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.3.4.1
اضرب في .
خطوة 2.1.2.3.4.2
اجمع و.
خطوة 2.1.2.3.4.3
اجمع و.
خطوة 2.1.2.4
ارفع إلى القوة .
خطوة 2.1.2.5
ارفع إلى القوة .
خطوة 2.1.2.6
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 2.1.2.7
اختزِل العبارة بحذف العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.7.1
أضف و.
خطوة 2.1.2.7.2
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.7.2.1
أخرِج العامل من .
خطوة 2.1.2.7.2.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.7.2.2.1
أخرِج العامل من .
خطوة 2.1.2.7.2.2.2
ألغِ العامل المشترك.
خطوة 2.1.2.7.2.2.3
أعِد كتابة العبارة.
خطوة 2.1.2.7.2.2.4
اقسِم على .
خطوة 2.1.2.8
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.1.2.9
اضرب في .
خطوة 2.1.3
المشتق الثاني لـ بالنسبة إلى هو .
خطوة 2.2
عيّن قيمة المشتق الثاني بحيث تصبح مساوية لـ ثم حل المعادلة .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
عيّن قيمة المشتق الثاني بحيث تصبح مساوية لـ .
خطوة 2.2.2
حلّل المتعادل الأيسر إلى عوامل.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.2.1
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.2.1.1
أخرِج العامل من .
خطوة 2.2.2.1.2
اضرب في .
خطوة 2.2.2.1.3
أخرِج العامل من .
خطوة 2.2.2.2
أعِد كتابة بالصيغة .
خطوة 2.2.2.3
أعِد ترتيب و.
خطوة 2.2.2.4
حلّل إلى عوامل.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.2.4.1
بما أن كلا الحدّين هما مربعان كاملان، حلّل إلى عوامل باستخدام قاعدة الفرق بين مربعين، حيث و.
خطوة 2.2.2.4.2
احذِف الأقواس غير الضرورية.
خطوة 2.2.3
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 2.2.4
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.4.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.2.4.2
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.4.2.1
خُذ اللوغاريتم الطبيعي لكلا المتعادلين لحذف المتغير من الأُس.
خطوة 2.2.4.2.2
لا يمكن حل المعادلة لأن غير معرّفة.
غير معرّف
خطوة 2.2.4.2.3
لا يوجد حل لـ
لا يوجد حل
لا يوجد حل
لا يوجد حل
خطوة 2.2.5
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.5.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.2.5.2
اطرح من كلا المتعادلين.
خطوة 2.2.6
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.6.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.2.6.2
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.6.2.1
اطرح من كلا المتعادلين.
خطوة 2.2.6.2.2
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.6.2.2.1
اقسِم كل حد في على .
خطوة 2.2.6.2.2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.6.2.2.2.1
قسمة قيمتين سالبتين على بعضهما البعض ينتج عنها قيمة موجبة.
خطوة 2.2.6.2.2.2.2
اقسِم على .
خطوة 2.2.6.2.2.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.6.2.2.3.1
اقسِم على .
خطوة 2.2.7
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 3
نطاق العبارة هو جميع الأعداد الحقيقية ما عدا ما يجعل العبارة غير معرّفة. في هذه الحالة، لا يوجد عدد حقيقي يجعل العبارة غير معرّفة.
ترميز الفترة:
ترميز بناء المجموعات:
خطوة 4
أنشئ فترات حول القيم التي يكون عندها المشتق الثاني مساويًا لصفر أو غير معرّف.
خطوة 5
عوّض بأي عدد من الفترة في المشتق الثاني واحسِب القيمة لتحديد التقعر.
انقر لعرض المزيد من الخطوات...
خطوة 5.1
استبدِل المتغير بـ في العبارة.
خطوة 5.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.1.1
ارفع إلى القوة .
خطوة 5.2.1.2
اضرب في .
خطوة 5.2.1.3
ارفع إلى القوة .
خطوة 5.2.1.4
اقسِم على .
خطوة 5.2.1.5
اضرب في .
خطوة 5.2.1.6
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
خطوة 5.2.1.7
اجمع و.
خطوة 5.2.1.8
انقُل السالب أمام الكسر.
خطوة 5.2.1.9
ارفع إلى القوة .
خطوة 5.2.1.10
اقسِم على .
خطوة 5.2.1.11
اضرب في .
خطوة 5.2.1.12
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
خطوة 5.2.2
اجمع الكسور.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.2.1
اجمع البسوط على القاسم المشترك.
خطوة 5.2.2.2
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.2.2.1
أضف و.
خطوة 5.2.2.2.2
انقُل السالب أمام الكسر.
خطوة 5.2.3
الإجابة النهائية هي .
خطوة 5.3
الرسم البياني مقعر لأسفل في الفترة لأن سالبة.
مقعر لأسفل خلال بما أن سالبة
مقعر لأسفل خلال بما أن سالبة
خطوة 6
عوّض بأي عدد من الفترة في المشتق الثاني واحسِب القيمة لتحديد التقعر.
انقر لعرض المزيد من الخطوات...
خطوة 6.1
استبدِل المتغير بـ في العبارة.
خطوة 6.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.1.1
ينتج عن رفع إلى أي قوة موجبة.
خطوة 6.2.1.2
اضرب في .
خطوة 6.2.1.3
ينتج عن رفع إلى أي قوة موجبة.
خطوة 6.2.1.4
اقسِم على .
خطوة 6.2.1.5
اضرب في .
خطوة 6.2.1.6
أي شيء مرفوع إلى هو .
خطوة 6.2.1.7
اضرب في .
خطوة 6.2.1.8
ينتج عن رفع إلى أي قوة موجبة.
خطوة 6.2.1.9
اقسِم على .
خطوة 6.2.1.10
اضرب في .
خطوة 6.2.1.11
أي شيء مرفوع إلى هو .
خطوة 6.2.2
أضف و.
خطوة 6.2.3
الإجابة النهائية هي .
خطوة 6.3
الرسم البياني مقعر لأعلى في الفترة لأن موجبة.
مقعر لأعلى خلال بما أن موجبة
مقعر لأعلى خلال بما أن موجبة
خطوة 7
عوّض بأي عدد من الفترة في المشتق الثاني واحسِب القيمة لتحديد التقعر.
انقر لعرض المزيد من الخطوات...
خطوة 7.1
استبدِل المتغير بـ في العبارة.
خطوة 7.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 7.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 7.2.1.1
ارفع إلى القوة .
خطوة 7.2.1.2
اضرب في .
خطوة 7.2.1.3
ارفع إلى القوة .
خطوة 7.2.1.4
اقسِم على .
خطوة 7.2.1.5
اضرب في .
خطوة 7.2.1.6
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
خطوة 7.2.1.7
اجمع و.
خطوة 7.2.1.8
انقُل السالب أمام الكسر.
خطوة 7.2.1.9
ارفع إلى القوة .
خطوة 7.2.1.10
اقسِم على .
خطوة 7.2.1.11
اضرب في .
خطوة 7.2.1.12
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
خطوة 7.2.2
اجمع الكسور.
انقر لعرض المزيد من الخطوات...
خطوة 7.2.2.1
اجمع البسوط على القاسم المشترك.
خطوة 7.2.2.2
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 7.2.2.2.1
أضف و.
خطوة 7.2.2.2.2
انقُل السالب أمام الكسر.
خطوة 7.2.3
الإجابة النهائية هي .
خطوة 7.3
الرسم البياني مقعر لأسفل في الفترة لأن سالبة.
مقعر لأسفل خلال بما أن سالبة
مقعر لأسفل خلال بما أن سالبة
خطوة 8
يكون الرسم البياني مقعرًا لأسفل إذا كان المشتق الثاني سالبًا ومقعرًا لأعلى إذا كان المشتق الثاني موجبًا.
مقعر لأسفل خلال بما أن سالبة
مقعر لأعلى خلال بما أن موجبة
مقعر لأسفل خلال بما أن سالبة
خطوة 9