حساب التفاضل والتكامل الأمثلة

خطوة 1
أوجِد مشتقة المتعادلين.
خطوة 2
مشتق بالنسبة إلى يساوي .
خطوة 3
أوجِد مشتقة المتعادل الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
اجمع الكسور.
انقر لعرض المزيد من الخطوات...
خطوة 3.1.1
اجمع و.
خطوة 3.1.2
أعِد كتابة بالصيغة .
خطوة 3.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 3.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 3.3
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.3.2
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 3.3.3
أضف و.
خطوة 3.3.4
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.3.5
اضرب في .
خطوة 3.4
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 3.4.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 3.4.2
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 3.4.3
استبدِل كافة حالات حدوث بـ .
خطوة 3.5
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 3.5.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.5.2
بسّط الحدود.
انقر لعرض المزيد من الخطوات...
خطوة 3.5.2.1
اجمع و.
خطوة 3.5.2.2
اضرب في .
خطوة 3.5.2.3
اجمع و.
خطوة 3.5.2.4
اجمع و.
خطوة 3.5.2.5
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 3.5.2.5.1
انقُل إلى يسار .
خطوة 3.5.2.5.2
انقُل إلى القاسم باستخدام قاعدة الأُسس السالبة .
خطوة 3.5.2.6
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 3.5.2.6.1
أخرِج العامل من .
خطوة 3.5.2.6.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 3.5.2.6.2.1
أخرِج العامل من .
خطوة 3.5.2.6.2.2
ألغِ العامل المشترك.
خطوة 3.5.2.6.2.3
أعِد كتابة العبارة.
خطوة 3.5.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.5.4
اضرب في .
خطوة 4
عدّل المعادلة بمساواة قيمة الطرف الأيسر بقيمة الطرف الأيمن.
خطوة 5
استبدِل بـ .