إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
يمكن إيجاد الدالة بحساب قيمة التكامل غير المحدد للمشتق .
خطوة 2
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 3
خطوة 3.1
افترض أن . أوجِد .
خطوة 3.1.1
أوجِد مشتقة .
خطوة 3.1.2
أوجِد المشتقة.
خطوة 3.1.2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.1.2.2
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 3.1.3
احسِب قيمة .
خطوة 3.1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.1.3.3
اضرب في .
خطوة 3.1.4
اطرح من .
خطوة 3.2
أعِد كتابة المسألة باستخدام و.
خطوة 4
خطوة 4.1
انقُل السالب أمام الكسر.
خطوة 4.2
اجمع و.
خطوة 5
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 6
اضرب في .
خطوة 7
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 8
خطوة 8.1
بسّط.
خطوة 8.1.1
اجمع و.
خطوة 8.1.2
ألغِ العامل المشترك لـ .
خطوة 8.1.2.1
ألغِ العامل المشترك.
خطوة 8.1.2.2
أعِد كتابة العبارة.
خطوة 8.1.3
اضرب في .
خطوة 8.2
استخدِم لكتابة في صورة .
خطوة 9
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 10
استبدِل كافة حالات حدوث بـ .
خطوة 11
الدالة إذا كانت مشتقة من تكامل مشتق الدالة. ويُعد هذا صحيحًا وفقًا للنظرية الأساسية للتفاضل والتكامل.