إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
اكتب في صورة دالة.
خطوة 2
خطوة 2.1
أوجِد المشتق الأول.
خطوة 2.1.1
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 2.1.1.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 2.1.1.2
مشتق بالنسبة إلى يساوي .
خطوة 2.1.1.3
استبدِل كافة حالات حدوث بـ .
خطوة 2.1.2
أوجِد المشتقة.
خطوة 2.1.2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.1.2.3
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.1.2.4
اجمع الكسور.
خطوة 2.1.2.4.1
أضف و.
خطوة 2.1.2.4.2
اجمع و.
خطوة 2.1.2.4.3
اجمع و.
خطوة 2.2
أوجِد المشتق الثاني.
خطوة 2.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.2.2
أوجِد المشتقة باستخدام قاعدة القسمة التي تنص على أن هو حيث و.
خطوة 2.2.3
أوجِد المشتقة.
خطوة 2.2.3.1
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.2.3.2
انقُل إلى يسار .
خطوة 2.2.3.3
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.2.3.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.2.3.5
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.2.3.6
بسّط العبارة.
خطوة 2.2.3.6.1
أضف و.
خطوة 2.2.3.6.2
اضرب في .
خطوة 2.2.4
اضرب في بجمع الأُسس.
خطوة 2.2.4.1
انقُل .
خطوة 2.2.4.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 2.2.4.3
أضف و.
خطوة 2.2.5
اجمع و.
خطوة 2.2.6
بسّط.
خطوة 2.2.6.1
طبّق خاصية التوزيع.
خطوة 2.2.6.2
طبّق خاصية التوزيع.
خطوة 2.2.6.3
طبّق خاصية التوزيع.
خطوة 2.2.6.4
بسّط بَسْط الكسر.
خطوة 2.2.6.4.1
بسّط كل حد.
خطوة 2.2.6.4.1.1
اضرب في بجمع الأُسس.
خطوة 2.2.6.4.1.1.1
انقُل .
خطوة 2.2.6.4.1.1.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 2.2.6.4.1.1.3
أضف و.
خطوة 2.2.6.4.1.2
اضرب في .
خطوة 2.2.6.4.1.3
اضرب في .
خطوة 2.2.6.4.1.4
اضرب في .
خطوة 2.2.6.4.1.5
اضرب في .
خطوة 2.2.6.4.2
اطرح من .
خطوة 2.2.6.5
أخرِج العامل من .
خطوة 2.2.6.5.1
أخرِج العامل من .
خطوة 2.2.6.5.2
أخرِج العامل من .
خطوة 2.2.6.5.3
أخرِج العامل من .
خطوة 2.2.6.6
أخرِج العامل من .
خطوة 2.2.6.7
أعِد كتابة بالصيغة .
خطوة 2.2.6.8
أخرِج العامل من .
خطوة 2.2.6.9
أعِد كتابة بالصيغة .
خطوة 2.2.6.10
انقُل السالب أمام الكسر.
خطوة 2.3
المشتق الثاني لـ بالنسبة إلى هو .
خطوة 3
خطوة 3.1
عيّن قيمة المشتق الثاني بحيث تصبح مساوية لـ .
خطوة 3.2
عيّن قيمة بسط الكسر بحيث تصبح مساوية لصفر.
خطوة 3.3
أوجِد قيمة في المعادلة.
خطوة 3.3.1
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 3.3.2
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 3.3.2.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 3.3.2.2
أوجِد قيمة في .
خطوة 3.3.2.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
خطوة 3.3.2.2.2
بسّط .
خطوة 3.3.2.2.2.1
أعِد كتابة بالصيغة .
خطوة 3.3.2.2.2.2
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
خطوة 3.3.2.2.2.3
زائد أو ناقص يساوي .
خطوة 3.3.3
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 3.3.3.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 3.3.3.2
أوجِد قيمة في .
خطوة 3.3.3.2.1
أضف إلى كلا المتعادلين.
خطوة 3.3.3.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
خطوة 3.3.3.2.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 3.3.3.2.3.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 3.3.3.2.3.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 3.3.3.2.3.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 3.3.4
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 4
خطوة 4.1
عوّض بقيمة في لإيجاد قيمة .
خطوة 4.1.1
استبدِل المتغير بـ في العبارة.
خطوة 4.1.2
بسّط النتيجة.
خطوة 4.1.2.1
ينتج عن رفع إلى أي قوة موجبة.
خطوة 4.1.2.2
أضف و.
خطوة 4.1.2.3
اللوغاريتم الطبيعي لـ يساوي .
خطوة 4.1.2.4
الإجابة النهائية هي .
خطوة 4.2
النقطة التي تم إيجادها بالتعويض بـ في هي . ويمكن أن تكون هذه النقطة نقطة انقلاب.
خطوة 4.3
عوّض بقيمة في لإيجاد قيمة .
خطوة 4.3.1
استبدِل المتغير بـ في العبارة.
خطوة 4.3.2
بسّط النتيجة.
خطوة 4.3.2.1
أعِد كتابة بالصيغة .
خطوة 4.3.2.1.1
استخدِم لكتابة في صورة .
خطوة 4.3.2.1.2
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 4.3.2.1.3
اجمع و.
خطوة 4.3.2.1.4
ألغِ العامل المشترك لـ .
خطوة 4.3.2.1.4.1
ألغِ العامل المشترك.
خطوة 4.3.2.1.4.2
أعِد كتابة العبارة.
خطوة 4.3.2.1.5
احسِب قيمة الأُس.
خطوة 4.3.2.2
أضف و.
خطوة 4.3.2.3
الإجابة النهائية هي .
خطوة 4.4
النقطة التي تم إيجادها بالتعويض بـ في هي . ويمكن أن تكون هذه النقطة نقطة انقلاب.
خطوة 4.5
عوّض بقيمة في لإيجاد قيمة .
خطوة 4.5.1
استبدِل المتغير بـ في العبارة.
خطوة 4.5.2
بسّط النتيجة.
خطوة 4.5.2.1
بسّط كل حد.
خطوة 4.5.2.1.1
طبّق قاعدة الضرب على .
خطوة 4.5.2.1.2
ارفع إلى القوة .
خطوة 4.5.2.1.3
اضرب في .
خطوة 4.5.2.1.4
أعِد كتابة بالصيغة .
خطوة 4.5.2.1.4.1
استخدِم لكتابة في صورة .
خطوة 4.5.2.1.4.2
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 4.5.2.1.4.3
اجمع و.
خطوة 4.5.2.1.4.4
ألغِ العامل المشترك لـ .
خطوة 4.5.2.1.4.4.1
ألغِ العامل المشترك.
خطوة 4.5.2.1.4.4.2
أعِد كتابة العبارة.
خطوة 4.5.2.1.4.5
احسِب قيمة الأُس.
خطوة 4.5.2.2
أضف و.
خطوة 4.5.2.3
الإجابة النهائية هي .
خطوة 4.6
النقطة التي تم إيجادها بالتعويض بـ في هي . ويمكن أن تكون هذه النقطة نقطة انقلاب.
خطوة 4.7
حدد النقاط التي يمكن أن تكون نقاط انقلاب.
خطوة 5
قسّم إلى فترات حول النقاط التي من المحتمل أن تكون نقاط انقلاب.
خطوة 6
خطوة 6.1
استبدِل المتغير بـ في العبارة.
خطوة 6.2
بسّط النتيجة.
خطوة 6.2.1
بسّط بَسْط الكسر.
خطوة 6.2.1.1
ارفع إلى القوة .
خطوة 6.2.1.2
اطرح من .
خطوة 6.2.1.3
اجمع الأُسس.
خطوة 6.2.1.3.1
اضرب في .
خطوة 6.2.1.3.2
اضرب في .
خطوة 6.2.2
بسّط القاسم.
خطوة 6.2.2.1
ارفع إلى القوة .
خطوة 6.2.2.2
أضف و.
خطوة 6.2.2.3
ارفع إلى القوة .
خطوة 6.2.3
بسّط العبارة.
خطوة 6.2.3.1
اقسِم على .
خطوة 6.2.3.2
اضرب في .
خطوة 6.2.4
الإجابة النهائية هي .
خطوة 6.3
المشتق الثاني عند يساوي . وبما أنه سالب، فإن المشتق الثاني يتناقص خلال الفترة
تناقص خلال حيث إن
تناقص خلال حيث إن
خطوة 7
خطوة 7.1
استبدِل المتغير بـ في العبارة.
خطوة 7.2
بسّط النتيجة.
خطوة 7.2.1
بسّط بَسْط الكسر.
خطوة 7.2.1.1
ارفع إلى القوة .
خطوة 7.2.1.2
اطرح من .
خطوة 7.2.1.3
اجمع الأُسس.
خطوة 7.2.1.3.1
اضرب في .
خطوة 7.2.1.3.2
اضرب في .
خطوة 7.2.2
بسّط القاسم.
خطوة 7.2.2.1
ارفع إلى القوة .
خطوة 7.2.2.2
أضف و.
خطوة 7.2.2.3
ارفع إلى القوة .
خطوة 7.2.3
بسّط العبارة.
خطوة 7.2.3.1
اقسِم على .
خطوة 7.2.3.2
اضرب في .
خطوة 7.2.4
الإجابة النهائية هي .
خطوة 7.3
في ، المشتق الثاني هو . نظرًا إلى أن هذا موجب، فإن المشتق الثاني يتزايد على مدى الفترة .
تزايد خلال نظرًا إلى أن
تزايد خلال نظرًا إلى أن
خطوة 8
خطوة 8.1
استبدِل المتغير بـ في العبارة.
خطوة 8.2
بسّط النتيجة.
خطوة 8.2.1
بسّط بَسْط الكسر.
خطوة 8.2.1.1
ارفع إلى القوة .
خطوة 8.2.1.2
اطرح من .
خطوة 8.2.1.3
اجمع الأُسس.
خطوة 8.2.1.3.1
اضرب في .
خطوة 8.2.1.3.2
اضرب في .
خطوة 8.2.2
بسّط القاسم.
خطوة 8.2.2.1
ارفع إلى القوة .
خطوة 8.2.2.2
أضف و.
خطوة 8.2.2.3
ارفع إلى القوة .
خطوة 8.2.3
بسّط العبارة.
خطوة 8.2.3.1
اقسِم على .
خطوة 8.2.3.2
اضرب في .
خطوة 8.2.4
الإجابة النهائية هي .
خطوة 8.3
في ، المشتق الثاني هو . نظرًا إلى أن هذا موجب، فإن المشتق الثاني يتزايد على مدى الفترة .
تزايد خلال نظرًا إلى أن
تزايد خلال نظرًا إلى أن
خطوة 9
خطوة 9.1
استبدِل المتغير بـ في العبارة.
خطوة 9.2
بسّط النتيجة.
خطوة 9.2.1
بسّط بَسْط الكسر.
خطوة 9.2.1.1
ارفع إلى القوة .
خطوة 9.2.1.2
اطرح من .
خطوة 9.2.1.3
اجمع الأُسس.
خطوة 9.2.1.3.1
اضرب في .
خطوة 9.2.1.3.2
اضرب في .
خطوة 9.2.2
بسّط القاسم.
خطوة 9.2.2.1
ارفع إلى القوة .
خطوة 9.2.2.2
أضف و.
خطوة 9.2.2.3
ارفع إلى القوة .
خطوة 9.2.3
بسّط العبارة.
خطوة 9.2.3.1
اقسِم على .
خطوة 9.2.3.2
اضرب في .
خطوة 9.2.4
الإجابة النهائية هي .
خطوة 9.3
المشتق الثاني عند يساوي . وبما أنه سالب، فإن المشتق الثاني يتناقص خلال الفترة
تناقص خلال حيث إن
تناقص خلال حيث إن
خطوة 10
An inflection point is a point on a curve at which the concavity changes sign from plus to minus or from minus to plus. The inflection points in this case are .
خطوة 11