إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
أضف إلى كلا المتعادلين.
خطوة 2
خطوة 2.1
اقسِم كل حد في على .
خطوة 2.2
بسّط الطرف الأيسر.
خطوة 2.2.1
ألغِ العامل المشترك لـ .
خطوة 2.2.1.1
ألغِ العامل المشترك.
خطوة 2.2.1.2
اقسِم على .
خطوة 2.3
بسّط الطرف الأيمن.
خطوة 2.3.1
بسّط كل حد.
خطوة 2.3.1.1
اقسِم على .
خطوة 2.3.1.2
احذِف العامل المشترك لـ و.
خطوة 2.3.1.2.1
أخرِج العامل من .
خطوة 2.3.1.2.2
ألغِ العوامل المشتركة.
خطوة 2.3.1.2.2.1
أخرِج العامل من .
خطوة 2.3.1.2.2.2
ألغِ العامل المشترك.
خطوة 2.3.1.2.2.3
أعِد كتابة العبارة.
خطوة 3
خُذ الجذر المحدد لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
خطوة 4
خطوة 4.1
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 4.2
اجمع و.
خطوة 4.3
اجمع البسوط على القاسم المشترك.
خطوة 4.4
اضرب في .
خطوة 4.5
أعِد كتابة بالصيغة .
خطوة 4.5.1
أخرِج عامل القوة الكاملة من .
خطوة 4.5.2
أخرِج عامل القوة الكاملة من .
خطوة 4.5.3
أعِد ترتيب الكسر .
خطوة 4.6
أخرِج الحدود من تحت الجذر.
خطوة 4.7
اجمع و.
خطوة 5
خطوة 5.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 5.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 5.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 6
عيّن قيمة المجذور في بحيث تصبح أكبر من أو تساوي لإيجاد الموضع الذي تكون فيه العبارة معرّفة.
خطوة 7
خطوة 7.1
اطرح من كلا طرفي المتباينة.
خطوة 7.2
بما أن الطرف الأيسر به قوة زوجية، إذن هو دائمًا موجب بالنسبة إلى جميع الأعداد الحقيقية.
جميع الأعداد الحقيقية
جميع الأعداد الحقيقية
خطوة 8
النطاق هو جميع الأعداد الحقيقية.
ترميز الفترة:
ترميز بناء المجموعات:
خطوة 9
المدى هو مجموعة جميع قيم الصالحة. استخدِم الرسم البياني لإيجاد المدى.
ترميز الفترة:
ترميز بناء المجموعات:
خطوة 10
حدد النطاق والمدى.
النطاق:
المدى:
خطوة 11