حساب التفاضل والتكامل الأمثلة

أوجد أين يكون المشتق متزايد أو متناقص f(x)=x^2e^(-x)
خطوة 1
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 1.1.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 1.1.2.2
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 1.1.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 1.1.3
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.3.3
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.3.3.1
اضرب في .
خطوة 1.1.3.3.2
انقُل إلى يسار .
خطوة 1.1.3.3.3
أعِد كتابة بالصيغة .
خطوة 1.1.3.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.4
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.4.1
أعِد ترتيب الحدود.
خطوة 1.1.4.2
أعِد ترتيب العوامل في .
خطوة 1.2
المشتق الأول لـ بالنسبة إلى هو .
خطوة 2
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ ثم أوجِد حل المعادلة .
انقر لعرض المزيد من الخطوات...
خطوة 2.1
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ .
خطوة 2.2
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
أخرِج العامل من .
خطوة 2.2.2
أخرِج العامل من .
خطوة 2.2.3
أخرِج العامل من .
خطوة 2.3
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 2.4
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.5
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.5.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.5.2
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 2.5.2.1
خُذ اللوغاريتم الطبيعي لكلا المتعادلين لحذف المتغير من الأُس.
خطوة 2.5.2.2
لا يمكن حل المعادلة لأن غير معرّفة.
غير معرّف
خطوة 2.5.2.3
لا يوجد حل لـ
لا يوجد حل
لا يوجد حل
لا يوجد حل
خطوة 2.6
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.6.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.6.2
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 2.6.2.1
اطرح من كلا المتعادلين.
خطوة 2.6.2.2
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.6.2.2.1
اقسِم كل حد في على .
خطوة 2.6.2.2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.6.2.2.2.1
قسمة قيمتين سالبتين على بعضهما البعض ينتج عنها قيمة موجبة.
خطوة 2.6.2.2.2.2
اقسِم على .
خطوة 2.6.2.2.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 2.6.2.2.3.1
اقسِم على .
خطوة 2.7
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 3
القيم التي تجعل المشتق مساويًا لـ هي .
خطوة 4
قسّم إلى فترات منفصلة حول قيم التي تجعل المشتق يساوي أو التي تجعله غير معرّف.
خطوة 5
عوّض بقيمة من الفترة في المشتق لتحديد ما إذا كانت الدالة تتزايد أم تتناقص.
انقر لعرض المزيد من الخطوات...
خطوة 5.1
استبدِل المتغير بـ في العبارة.
خطوة 5.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.1.1
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.1.1.1
اضرب في .
انقر لعرض المزيد من الخطوات...
خطوة 5.2.1.1.1.1
ارفع إلى القوة .
خطوة 5.2.1.1.1.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 5.2.1.1.2
أضف و.
خطوة 5.2.1.2
ارفع إلى القوة .
خطوة 5.2.1.3
اضرب في .
خطوة 5.2.1.4
بسّط.
خطوة 5.2.1.5
أعِد كتابة بالصيغة .
خطوة 5.2.1.6
اضرب في .
خطوة 5.2.1.7
اضرب في .
خطوة 5.2.2
اطرح من .
خطوة 5.2.3
الإجابة النهائية هي .
خطوة 5.3
المشتق في هو . نظرًا إلى أن هذا سالب، فإن الدالة تتناقص خلال .
تناقص خلال حيث إن
تناقص خلال حيث إن
خطوة 6
عوّض بقيمة من الفترة في المشتق لتحديد ما إذا كانت الدالة تتزايد أم تتناقص.
انقر لعرض المزيد من الخطوات...
خطوة 6.1
استبدِل المتغير بـ في العبارة.
خطوة 6.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.1.1
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 6.2.1.2
اضرب في .
خطوة 6.2.1.3
اضرب في .
خطوة 6.2.1.4
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
خطوة 6.2.1.5
أعِد كتابة بالصيغة .
خطوة 6.2.1.6
اضرب في .
خطوة 6.2.1.7
اضرب في .
خطوة 6.2.1.8
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
خطوة 6.2.1.9
اجمع و.
خطوة 6.2.2
اجمع الكسور.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.2.1
اجمع البسوط على القاسم المشترك.
خطوة 6.2.2.2
أضف و.
خطوة 6.2.3
الإجابة النهائية هي .
خطوة 6.3
المشتق في هو . نظرًا إلى أن هذا موجب، فإن الدالة تتزايد خلال .
تزايد خلال نظرًا إلى أن
تزايد خلال نظرًا إلى أن
خطوة 7
عوّض بقيمة من الفترة في المشتق لتحديد ما إذا كانت الدالة تتزايد أم تتناقص.
انقر لعرض المزيد من الخطوات...
خطوة 7.1
استبدِل المتغير بـ في العبارة.
خطوة 7.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 7.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 7.2.1.1
ارفع إلى القوة .
خطوة 7.2.1.2
اضرب في .
خطوة 7.2.1.3
اضرب في .
خطوة 7.2.1.4
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
خطوة 7.2.1.5
اجمع و.
خطوة 7.2.1.6
انقُل السالب أمام الكسر.
خطوة 7.2.1.7
اضرب في .
خطوة 7.2.1.8
اضرب في .
خطوة 7.2.1.9
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
خطوة 7.2.1.10
اجمع و.
خطوة 7.2.2
اجمع الكسور.
انقر لعرض المزيد من الخطوات...
خطوة 7.2.2.1
اجمع البسوط على القاسم المشترك.
خطوة 7.2.2.2
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 7.2.2.2.1
أضف و.
خطوة 7.2.2.2.2
انقُل السالب أمام الكسر.
خطوة 7.2.3
الإجابة النهائية هي .
خطوة 7.3
المشتق في هو . نظرًا إلى أن هذا سالب، فإن الدالة تتناقص خلال .
تناقص خلال حيث إن
تناقص خلال حيث إن
خطوة 8
اسرِد الفترات التي تتزايد الدالة وتتناقص فيها.
تزايد خلال:
تناقص خلال:
خطوة 9