حساب التفاضل والتكامل الأمثلة

خطوة 1
اكتب في صورة دالة.
خطوة 2
يمكن إيجاد الدالة بإيجاد التكامل غير المحدد للمشتق .
خطوة 3
عيّن التكامل لإيجاد الحل.
خطوة 4
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 5
أوجِد التكامل بالتجزئة باستخدام القاعدة ، حيث و.
خطوة 6
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 6.1
اجمع و.
خطوة 6.2
اجمع و.
خطوة 6.3
اجمع و.
خطوة 7
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 8
لنفترض أن . إذن . أعِد الكتابة باستخدام و.
انقر لعرض المزيد من الخطوات...
خطوة 8.1
افترض أن . أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 8.1.1
أوجِد مشتقة .
خطوة 8.1.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 8.1.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 8.1.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 8.1.5
أضف و.
خطوة 8.2
أعِد كتابة المسألة باستخدام و.
خطوة 9
تكامل بالنسبة إلى هو .
خطوة 10
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 10.1
أعِد كتابة بالصيغة .
خطوة 10.2
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 10.2.1
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 10.2.2
اكتب كل عبارة قاسمها المشترك ، بضربها في العامل المناسب للعدد .
انقر لعرض المزيد من الخطوات...
خطوة 10.2.2.1
اضرب في .
خطوة 10.2.2.2
ارفع إلى القوة .
خطوة 10.2.2.3
ارفع إلى القوة .
خطوة 10.2.2.4
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 10.2.2.5
أضف و.
خطوة 10.2.3
اجمع البسوط على القاسم المشترك.
خطوة 10.2.4
اجمع و.
خطوة 11
استبدِل كافة حالات حدوث بـ .
خطوة 12
الإجابة هي المشتق العكسي للدالة .