إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
خُذ نهاية بسط الكسر ونهاية القاسم.
خطوة 1.2
احسِب قيمة حد بسط الكسر.
خطوة 1.2.1
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 1.2.2
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 1.2.3
انقُل النهاية داخل الدالة المثلثية نظرًا إلى أن دالة الجيب متصلة.
خطوة 1.2.4
احسِب قيم الحدود بالتعويض عن جميع حالات حدوث بـ .
خطوة 1.2.4.1
احسِب قيمة حد بالتعويض عن بـ .
خطوة 1.2.4.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 1.2.5
بسّط الإجابة.
خطوة 1.2.5.1
بسّط كل حد.
خطوة 1.2.5.1.1
اضرب في .
خطوة 1.2.5.1.2
القيمة الدقيقة لـ هي .
خطوة 1.2.5.1.3
اضرب في .
خطوة 1.2.5.2
أضف و.
خطوة 1.3
احسِب قيمة حد القاسم.
خطوة 1.3.1
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 1.3.2
انقُل الأُس من خارج النهاية باستخدام قاعدة القوة للنهايات.
خطوة 1.3.3
انقُل النهاية داخل الدالة المثلثية نظرًا إلى أن دالة الجيب متصلة.
خطوة 1.3.4
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 1.3.5
احسِب قيم الحدود بالتعويض عن جميع حالات حدوث بـ .
خطوة 1.3.5.1
احسِب قيمة حد بالتعويض عن بـ .
خطوة 1.3.5.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 1.3.6
بسّط الإجابة.
خطوة 1.3.6.1
بسّط كل حد.
خطوة 1.3.6.1.1
ينتج عن رفع إلى أي قوة موجبة.
خطوة 1.3.6.1.2
اضرب في .
خطوة 1.3.6.1.3
القيمة الدقيقة لـ هي .
خطوة 1.3.6.2
أضف و.
خطوة 1.3.6.3
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 1.3.7
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 1.4
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 2
بما أن مكتوبة بصيغة غير معيّنة، طبّق قاعدة لوبيتال. تنص قاعدة لوبيتال على أن نهاية ناتج قسمة الدوال يساوي نهاية ناتج قسمة مشتقاتها.
خطوة 3
خطوة 3.1
أوجِد مشتقة البسط والقاسم.
خطوة 3.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.3
احسِب قيمة .
خطوة 3.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.3.3
اضرب في .
خطوة 3.4
احسِب قيمة .
خطوة 3.4.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.4.2
مشتق بالنسبة إلى يساوي .
خطوة 3.5
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.6
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.7
احسِب قيمة .
خطوة 3.7.1
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 3.7.1.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 3.7.1.2
مشتق بالنسبة إلى يساوي .
خطوة 3.7.1.3
استبدِل كافة حالات حدوث بـ .
خطوة 3.7.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.7.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.7.4
اضرب في .
خطوة 3.7.5
انقُل إلى يسار .
خطوة 4
قسّم النهاية بتطبيق قاعدة قسمة النهايات على النهاية بينما يقترب من .
خطوة 5
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 6
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 7
انقُل النهاية داخل الدالة المثلثية نظرًا إلى أن دالة جيب التمام متصلة.
خطوة 8
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 9
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 10
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 11
انقُل النهاية داخل الدالة المثلثية نظرًا إلى أن دالة جيب التمام متصلة.
خطوة 12
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 13
خطوة 13.1
احسِب قيمة حد بالتعويض عن بـ .
خطوة 13.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 13.3
احسِب قيمة حد بالتعويض عن بـ .
خطوة 14
خطوة 14.1
بسّط بَسْط الكسر.
خطوة 14.1.1
القيمة الدقيقة لـ هي .
خطوة 14.1.2
اضرب في .
خطوة 14.1.3
اطرح من .
خطوة 14.2
بسّط القاسم.
خطوة 14.2.1
اضرب في .
خطوة 14.2.2
اضرب في .
خطوة 14.2.3
القيمة الدقيقة لـ هي .
خطوة 14.2.4
اضرب في .
خطوة 14.2.5
أضف و.
خطوة 14.3
احذِف العامل المشترك لـ و.
خطوة 14.3.1
أخرِج العامل من .
خطوة 14.3.2
ألغِ العوامل المشتركة.
خطوة 14.3.2.1
أخرِج العامل من .
خطوة 14.3.2.2
ألغِ العامل المشترك.
خطوة 14.3.2.3
أعِد كتابة العبارة.
خطوة 14.3.2.4
اقسِم على .