حساب التفاضل والتكامل الأمثلة

Encuentre la derivada de Second f(x)=(x^2+5x)/(25-x^2)
خطوة 1
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
أوجِد المشتقة باستخدام قاعدة القسمة التي تنص على أن هو حيث و.
خطوة 1.2
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.2.3
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.2.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.2.5
اضرب في .
خطوة 1.2.6
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.2.7
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.2.8
أضف و.
خطوة 1.2.9
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.2.10
اضرب.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.10.1
اضرب في .
خطوة 1.2.10.2
اضرب في .
خطوة 1.2.11
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.2.12
انقُل إلى يسار .
خطوة 1.3
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1
طبّق خاصية التوزيع.
خطوة 1.3.2
طبّق خاصية التوزيع.
خطوة 1.3.3
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.3.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.3.1.1
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
انقر لعرض المزيد من الخطوات...
خطوة 1.3.3.1.1.1
طبّق خاصية التوزيع.
خطوة 1.3.3.1.1.2
طبّق خاصية التوزيع.
خطوة 1.3.3.1.1.3
طبّق خاصية التوزيع.
خطوة 1.3.3.1.2
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.3.1.2.1
اضرب في .
خطوة 1.3.3.1.2.2
اضرب في .
خطوة 1.3.3.1.2.3
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 1.3.3.1.2.4
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.3.1.2.4.1
انقُل .
خطوة 1.3.3.1.2.4.2
اضرب في .
انقر لعرض المزيد من الخطوات...
خطوة 1.3.3.1.2.4.2.1
ارفع إلى القوة .
خطوة 1.3.3.1.2.4.2.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 1.3.3.1.2.4.3
أضف و.
خطوة 1.3.3.1.2.5
اضرب في .
خطوة 1.3.3.1.2.6
اضرب في .
خطوة 1.3.3.1.3
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.3.1.3.1
انقُل .
خطوة 1.3.3.1.3.2
اضرب في .
انقر لعرض المزيد من الخطوات...
خطوة 1.3.3.1.3.2.1
ارفع إلى القوة .
خطوة 1.3.3.1.3.2.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 1.3.3.1.3.3
أضف و.
خطوة 1.3.3.1.4
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.3.1.4.1
انقُل .
خطوة 1.3.3.1.4.2
اضرب في .
خطوة 1.3.3.1.5
اضرب في .
خطوة 1.3.3.2
جمّع الحدود المتعاكسة في .
انقر لعرض المزيد من الخطوات...
خطوة 1.3.3.2.1
أضف و.
خطوة 1.3.3.2.2
أضف و.
خطوة 1.3.3.3
أضف و.
خطوة 1.3.4
أعِد ترتيب الحدود.
خطوة 1.3.5
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.5.1
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 1.3.5.1.1
أخرِج العامل من .
خطوة 1.3.5.1.2
أخرِج العامل من .
خطوة 1.3.5.1.3
أخرِج العامل من .
خطوة 1.3.5.1.4
أخرِج العامل من .
خطوة 1.3.5.1.5
أخرِج العامل من .
خطوة 1.3.5.2
حلّل إلى عوامل باستخدام قاعدة المربع الكامل.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.5.2.1
أعِد كتابة بالصيغة .
خطوة 1.3.5.2.2
تحقق من أن الحد الأوسط يساوي ضعف حاصل ضرب الأعداد المربعة في الحد الأول والحد الثالث.
خطوة 1.3.5.2.3
أعِد كتابة متعدد الحدود.
خطوة 1.3.5.2.4
حلّل إلى عوامل باستخدام قاعدة ثلاثي حدود المربع الكامل ، حيث و.
خطوة 1.3.6
بسّط القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.6.1
أعِد كتابة بالصيغة .
خطوة 1.3.6.2
أعِد ترتيب و.
خطوة 1.3.6.3
بما أن كلا الحدّين هما مربعان كاملان، حلّل إلى عوامل باستخدام قاعدة الفرق بين مربعين، حيث و.
خطوة 1.3.6.4
طبّق قاعدة الضرب على .
خطوة 1.3.7
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.7.1
أعِد ترتيب الحدود.
خطوة 1.3.7.2
ألغِ العامل المشترك.
خطوة 1.3.7.3
أعِد كتابة العبارة.
خطوة 2
أوجِد المشتق الثاني.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
أوجِد المشتقة باستخدام قاعدة المضاعف الثابت.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.1.2
طبّق القواعد الأساسية للأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.1
أعِد كتابة بالصيغة .
خطوة 2.1.2.2
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.2.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 2.1.2.2.2
اضرب في .
خطوة 2.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 2.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 2.3
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
اضرب في .
خطوة 2.3.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.3
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.4
أضف و.
خطوة 2.3.5
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.3.6
اضرب في .
خطوة 2.3.7
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.8
اضرب في .
خطوة 2.4
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
خطوة 2.5
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.5.1
اجمع و.
خطوة 2.5.2
أعِد ترتيب الحدود.
خطوة 3
المشتق الثاني لـ بالنسبة إلى هو .