إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
اكتب في صورة دالة.
خطوة 2
خطوة 2.1
أوجِد المشتق الأول.
خطوة 2.1.1
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 2.1.1.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 2.1.1.2
مشتق بالنسبة إلى يساوي .
خطوة 2.1.1.3
استبدِل كافة حالات حدوث بـ .
خطوة 2.1.2
أوجِد المشتقة.
خطوة 2.1.2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.1.2.3
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.1.2.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.1.2.5
بسّط العبارة.
خطوة 2.1.2.5.1
اضرب في .
خطوة 2.1.2.5.2
أعِد ترتيب عوامل .
خطوة 2.2
المشتق الأول لـ بالنسبة إلى هو .
خطوة 3
خطوة 3.1
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ .
خطوة 3.2
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 3.3
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 3.3.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 3.3.2
أوجِد قيمة في .
خطوة 3.3.2.1
أضف إلى كلا المتعادلين.
خطوة 3.3.2.2
اقسِم كل حد في على وبسّط.
خطوة 3.3.2.2.1
اقسِم كل حد في على .
خطوة 3.3.2.2.2
بسّط الطرف الأيسر.
خطوة 3.3.2.2.2.1
ألغِ العامل المشترك لـ .
خطوة 3.3.2.2.2.1.1
ألغِ العامل المشترك.
خطوة 3.3.2.2.2.1.2
اقسِم على .
خطوة 3.3.2.2.3
بسّط الطرف الأيمن.
خطوة 3.3.2.2.3.1
اقسِم على .
خطوة 3.4
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 3.4.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 3.4.2
أوجِد قيمة في .
خطوة 3.4.2.1
عيّن قيمة بسط الكسر بحيث تصبح مساوية لصفر.
خطوة 3.4.2.2
بما أن ، إذن لا توجد حلول.
لا يوجد حل
لا يوجد حل
لا يوجد حل
خطوة 3.5
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 4
القيم التي تجعل المشتق مساويًا لـ هي .
خطوة 5
بعد إيجاد النقطة التي تجعل المشتق مساويًا لـ أو غير معرف، تكون الفترة اللازمة للتحقق من أين تتزايد وأين تتناقص هو .
خطوة 6
خطوة 6.1
استبدِل المتغير بـ في العبارة.
خطوة 6.2
بسّط النتيجة.
خطوة 6.2.1
بسّط القاسم.
خطوة 6.2.1.1
بسّط كل حد.
خطوة 6.2.1.1.1
ينتج عن رفع إلى أي قوة موجبة.
خطوة 6.2.1.1.2
اضرب في .
خطوة 6.2.1.2
أضف و.
خطوة 6.2.1.3
ينتج عن رفع إلى أي قوة موجبة.
خطوة 6.2.1.4
أضف و.
خطوة 6.2.2
اختزِل العبارة بحذف العوامل المشتركة.
خطوة 6.2.2.1
ألغِ العامل المشترك لـ .
خطوة 6.2.2.1.1
ألغِ العامل المشترك.
خطوة 6.2.2.1.2
أعِد كتابة العبارة.
خطوة 6.2.2.2
بسّط العبارة.
خطوة 6.2.2.2.1
اضرب في .
خطوة 6.2.2.2.2
اضرب في .
خطوة 6.2.2.2.3
اطرح من .
خطوة 6.2.3
الإجابة النهائية هي .
خطوة 6.3
المشتق في هو . نظرًا إلى أن هذا سالب، فإن الدالة تتناقص خلال .
تناقص خلال حيث إن
تناقص خلال حيث إن
خطوة 7
خطوة 7.1
استبدِل المتغير بـ في العبارة.
خطوة 7.2
بسّط النتيجة.
خطوة 7.2.1
بسّط القاسم.
خطوة 7.2.1.1
بسّط كل حد.
خطوة 7.2.1.1.1
ارفع إلى القوة .
خطوة 7.2.1.1.2
اضرب في .
خطوة 7.2.1.2
اطرح من .
خطوة 7.2.1.3
ينتج عن رفع إلى أي قوة موجبة.
خطوة 7.2.1.4
أضف و.
خطوة 7.2.2
اختزِل العبارة بحذف العوامل المشتركة.
خطوة 7.2.2.1
ألغِ العامل المشترك لـ .
خطوة 7.2.2.1.1
ألغِ العامل المشترك.
خطوة 7.2.2.1.2
أعِد كتابة العبارة.
خطوة 7.2.2.2
بسّط العبارة.
خطوة 7.2.2.2.1
اضرب في .
خطوة 7.2.2.2.2
اضرب في .
خطوة 7.2.2.2.3
اطرح من .
خطوة 7.2.3
الإجابة النهائية هي .
خطوة 7.3
المشتق في هو . نظرًا إلى أن هذا موجب، فإن الدالة تتزايد خلال .
تزايد خلال نظرًا إلى أن
تزايد خلال نظرًا إلى أن
خطوة 8
اسرِد الفترات التي تتزايد الدالة وتتناقص فيها.
تزايد خلال:
تناقص خلال:
خطوة 9