إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
اكتب في صورة دالة.
خطوة 2
خطوة 2.1
أوجِد المشتق الثاني.
خطوة 2.1.1
أوجِد المشتق الأول.
خطوة 2.1.1.1
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 2.1.1.2
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 2.1.1.3
أوجِد المشتقة.
خطوة 2.1.1.3.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.1.1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.1.1.3.3
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.1.1.3.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.1.1.3.5
اضرب في .
خطوة 2.1.1.3.6
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.1.1.3.7
أضف و.
خطوة 2.1.1.4
بسّط.
خطوة 2.1.1.4.1
طبّق خاصية التوزيع.
خطوة 2.1.1.4.2
طبّق خاصية التوزيع.
خطوة 2.1.1.4.3
جمّع الحدود.
خطوة 2.1.1.4.3.1
انقُل إلى يسار .
خطوة 2.1.1.4.3.2
أضف و.
خطوة 2.1.1.4.3.2.1
انقُل .
خطوة 2.1.1.4.3.2.2
أضف و.
خطوة 2.1.1.4.3.3
اطرح من .
خطوة 2.1.1.4.4
أعِد ترتيب الحدود.
خطوة 2.1.1.4.5
أعِد ترتيب العوامل في .
خطوة 2.1.2
أوجِد المشتق الثاني.
خطوة 2.1.2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.1.2.2
احسِب قيمة .
خطوة 2.1.2.2.1
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 2.1.2.2.2
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 2.1.2.2.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.1.2.3
احسِب قيمة .
خطوة 2.1.2.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.1.2.3.2
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 2.1.2.3.3
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 2.1.2.3.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.1.2.3.5
اضرب في .
خطوة 2.1.2.4
احسِب قيمة .
خطوة 2.1.2.4.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.1.2.4.2
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 2.1.2.5
بسّط.
خطوة 2.1.2.5.1
طبّق خاصية التوزيع.
خطوة 2.1.2.5.2
جمّع الحدود.
خطوة 2.1.2.5.2.1
اطرح من .
خطوة 2.1.2.5.2.1.1
انقُل .
خطوة 2.1.2.5.2.1.2
اطرح من .
خطوة 2.1.2.5.2.2
أضف و.
خطوة 2.1.2.5.3
أعِد ترتيب الحدود.
خطوة 2.1.2.5.4
أعِد ترتيب العوامل في .
خطوة 2.1.3
المشتق الثاني لـ بالنسبة إلى هو .
خطوة 2.2
عيّن قيمة المشتق الثاني بحيث تصبح مساوية لـ ثم حل المعادلة .
خطوة 2.2.1
عيّن قيمة المشتق الثاني بحيث تصبح مساوية لـ .
خطوة 2.2.2
حلّل المتعادل الأيسر إلى عوامل.
خطوة 2.2.2.1
أخرِج العامل من .
خطوة 2.2.2.1.1
أخرِج العامل من .
خطوة 2.2.2.1.2
أخرِج العامل من .
خطوة 2.2.2.1.3
أخرِج العامل من .
خطوة 2.2.2.1.4
أخرِج العامل من .
خطوة 2.2.2.1.5
أخرِج العامل من .
خطوة 2.2.2.2
حلّل إلى عوامل.
خطوة 2.2.2.2.1
حلّل إلى عوامل باستخدام طريقة AC.
خطوة 2.2.2.2.1.1
ضع في اعتبارك الصيغة . ابحث عن زوج من الأعداد الصحيحة حاصل ضربهما ومجموعهما . في هذه الحالة، حاصل ضربهما ومجموعهما .
خطوة 2.2.2.2.1.2
اكتب الصيغة المحلّلة إلى عوامل مستخدمًا هذه الأعداد الصحيحة.
خطوة 2.2.2.2.2
احذِف الأقواس غير الضرورية.
خطوة 2.2.3
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 2.2.4
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 2.2.4.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.2.4.2
أوجِد قيمة في .
خطوة 2.2.4.2.1
خُذ اللوغاريتم الطبيعي لكلا المتعادلين لحذف المتغير من الأُس.
خطوة 2.2.4.2.2
لا يمكن حل المعادلة لأن غير معرّفة.
غير معرّف
خطوة 2.2.4.2.3
لا يوجد حل لـ
لا يوجد حل
لا يوجد حل
لا يوجد حل
خطوة 2.2.5
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 2.2.5.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.2.5.2
أضف إلى كلا المتعادلين.
خطوة 2.2.6
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 2.2.6.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.2.6.2
أضف إلى كلا المتعادلين.
خطوة 2.2.7
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 3
نطاق العبارة هو جميع الأعداد الحقيقية ما عدا ما يجعل العبارة غير معرّفة. في هذه الحالة، لا يوجد عدد حقيقي يجعل العبارة غير معرّفة.
ترميز الفترة:
ترميز بناء المجموعات:
خطوة 4
أنشئ فترات حول القيم التي يكون عندها المشتق الثاني مساويًا لصفر أو غير معرّف.
خطوة 5
خطوة 5.1
استبدِل المتغير بـ في العبارة.
خطوة 5.2
بسّط النتيجة.
خطوة 5.2.1
بسّط كل حد.
خطوة 5.2.1.1
ينتج عن رفع إلى أي قوة موجبة.
خطوة 5.2.1.2
أي شيء مرفوع إلى هو .
خطوة 5.2.1.3
اضرب في .
خطوة 5.2.1.4
اضرب في .
خطوة 5.2.1.5
أي شيء مرفوع إلى هو .
خطوة 5.2.1.6
اضرب في .
خطوة 5.2.1.7
أي شيء مرفوع إلى هو .
خطوة 5.2.1.8
اضرب في .
خطوة 5.2.2
بسّط بجمع الأعداد.
خطوة 5.2.2.1
أضف و.
خطوة 5.2.2.2
أضف و.
خطوة 5.2.3
الإجابة النهائية هي .
خطوة 5.3
الرسم البياني مقعر لأعلى في الفترة لأن موجبة.
مقعر لأعلى خلال بما أن موجبة
مقعر لأعلى خلال بما أن موجبة
خطوة 6
خطوة 6.1
استبدِل المتغير بـ في العبارة.
خطوة 6.2
بسّط النتيجة.
خطوة 6.2.1
بسّط كل حد.
خطوة 6.2.1.1
ارفع إلى القوة .
خطوة 6.2.1.2
اضرب في .
خطوة 6.2.2
بسّط بجمع الحدود.
خطوة 6.2.2.1
اطرح من .
خطوة 6.2.2.2
أضف و.
خطوة 6.2.3
الإجابة النهائية هي .
خطوة 6.3
الرسم البياني مقعر لأسفل في الفترة لأن سالبة.
مقعر لأسفل خلال بما أن سالبة
مقعر لأسفل خلال بما أن سالبة
خطوة 7
خطوة 7.1
استبدِل المتغير بـ في العبارة.
خطوة 7.2
بسّط النتيجة.
خطوة 7.2.1
بسّط كل حد.
خطوة 7.2.1.1
ارفع إلى القوة .
خطوة 7.2.1.2
اضرب في .
خطوة 7.2.2
بسّط بجمع الحدود.
خطوة 7.2.2.1
اطرح من .
خطوة 7.2.2.2
أضف و.
خطوة 7.2.3
الإجابة النهائية هي .
خطوة 7.3
الرسم البياني مقعر لأعلى في الفترة لأن موجبة.
مقعر لأعلى خلال بما أن موجبة
مقعر لأعلى خلال بما أن موجبة
خطوة 8
يكون الرسم البياني مقعرًا لأسفل إذا كان المشتق الثاني سالبًا ومقعرًا لأعلى إذا كان المشتق الثاني موجبًا.
مقعر لأعلى خلال بما أن موجبة
مقعر لأسفل خلال بما أن سالبة
مقعر لأعلى خلال بما أن موجبة
خطوة 9