إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
أوجِد المشتق الأول.
خطوة 1.1.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 1.1.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 1.1.2.2
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 1.1.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 1.1.3
أوجِد المشتقة.
خطوة 1.1.3.1
اجمع و.
خطوة 1.1.3.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.3.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.3.4
اجمع الكسور.
خطوة 1.1.3.4.1
اضرب في .
خطوة 1.1.3.4.2
اجمع و.
خطوة 1.1.3.4.3
بسّط العبارة.
خطوة 1.1.3.4.3.1
انقُل إلى يسار .
خطوة 1.1.3.4.3.2
أعِد كتابة بالصيغة .
خطوة 1.1.3.4.3.3
انقُل السالب أمام الكسر.
خطوة 1.2
أوجِد المشتق الثاني.
خطوة 1.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.2.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 1.2.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 1.2.2.2
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 1.2.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 1.2.3
أوجِد المشتقة.
خطوة 1.2.3.1
اجمع و.
خطوة 1.2.3.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.2.3.3
اضرب.
خطوة 1.2.3.3.1
اضرب في .
خطوة 1.2.3.3.2
اضرب في .
خطوة 1.2.3.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.2.3.5
اضرب في .
خطوة 1.3
المشتق الثاني لـ بالنسبة إلى هو .
خطوة 2
خطوة 2.1
عيّن قيمة المشتق الثاني بحيث تصبح مساوية لـ .
خطوة 2.2
عيّن قيمة بسط الكسر بحيث تصبح مساوية لصفر.
خطوة 2.3
أوجِد قيمة في المعادلة.
خطوة 2.3.1
خُذ اللوغاريتم الطبيعي لكلا المتعادلين لحذف المتغير من الأُس.
خطوة 2.3.2
لا يمكن حل المعادلة لأن غير معرّفة.
غير معرّف
خطوة 2.3.3
لا يوجد حل لـ
لا يوجد حل
لا يوجد حل
لا يوجد حل
خطوة 3
لا توجد قيم يمكن أن تجعل المشتق الثاني مساويًا لـ .
لا توجد نقاط انقلاب