إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
أوجِد المشتق الأول.
خطوة 1.1.1
أعِد كتابة بالصيغة .
خطوة 1.1.2
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
خطوة 1.1.2.1
طبّق خاصية التوزيع.
خطوة 1.1.2.2
طبّق خاصية التوزيع.
خطوة 1.1.2.3
طبّق خاصية التوزيع.
خطوة 1.1.3
بسّط ووحّد الحدود المتشابهة.
خطوة 1.1.3.1
بسّط كل حد.
خطوة 1.1.3.1.1
اضرب في .
خطوة 1.1.3.1.2
اضرب في .
خطوة 1.1.3.1.3
اضرب في .
خطوة 1.1.3.1.4
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 1.1.3.1.5
اضرب في بجمع الأُسس.
خطوة 1.1.3.1.5.1
انقُل .
خطوة 1.1.3.1.5.2
اضرب في .
خطوة 1.1.3.1.6
اضرب في .
خطوة 1.1.3.2
اطرح من .
خطوة 1.1.4
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 1.1.5
أوجِد المشتقة.
خطوة 1.1.5.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.5.2
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.5.3
أضف و.
خطوة 1.1.5.4
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.5.5
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.5.6
اضرب في .
خطوة 1.1.5.7
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.5.8
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.5.9
اضرب في .
خطوة 1.1.5.10
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.5.11
انقُل إلى يسار .
خطوة 1.1.6
بسّط.
خطوة 1.1.6.1
طبّق خاصية التوزيع.
خطوة 1.1.6.2
طبّق خاصية التوزيع.
خطوة 1.1.6.3
طبّق خاصية التوزيع.
خطوة 1.1.6.4
جمّع الحدود.
خطوة 1.1.6.4.1
انقُل إلى يسار .
خطوة 1.1.6.4.2
اضرب في بجمع الأُسس.
خطوة 1.1.6.4.2.1
انقُل .
خطوة 1.1.6.4.2.2
اضرب في .
خطوة 1.1.6.4.2.2.1
ارفع إلى القوة .
خطوة 1.1.6.4.2.2.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 1.1.6.4.2.3
أضف و.
خطوة 1.1.6.4.3
انقُل إلى يسار .
خطوة 1.1.6.4.4
اضرب في .
خطوة 1.1.6.4.5
اضرب في .
خطوة 1.1.6.4.6
ارفع إلى القوة .
خطوة 1.1.6.4.7
ارفع إلى القوة .
خطوة 1.1.6.4.8
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 1.1.6.4.9
أضف و.
خطوة 1.1.6.4.10
اضرب في .
خطوة 1.1.6.4.11
ارفع إلى القوة .
خطوة 1.1.6.4.12
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 1.1.6.4.13
أضف و.
خطوة 1.1.6.4.14
اطرح من .
خطوة 1.1.6.4.15
أضف و.
خطوة 1.1.6.5
أعِد ترتيب الحدود.
خطوة 1.2
أوجِد المشتق الثاني.
خطوة 1.2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.2.2
احسِب قيمة .
خطوة 1.2.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.2.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.2.2.3
اضرب في .
خطوة 1.2.3
احسِب قيمة .
خطوة 1.2.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.2.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.2.3.3
اضرب في .
خطوة 1.2.4
احسِب قيمة .
خطوة 1.2.4.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.2.4.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.2.4.3
اضرب في .
خطوة 1.3
المشتق الثاني لـ بالنسبة إلى هو .
خطوة 2
خطوة 2.1
عيّن قيمة المشتق الثاني بحيث تصبح مساوية لـ .
خطوة 2.2
أخرِج العامل من .
خطوة 2.2.1
أخرِج العامل من .
خطوة 2.2.2
أخرِج العامل من .
خطوة 2.2.3
أخرِج العامل من .
خطوة 2.2.4
أخرِج العامل من .
خطوة 2.2.5
أخرِج العامل من .
خطوة 2.3
اقسِم كل حد في على وبسّط.
خطوة 2.3.1
اقسِم كل حد في على .
خطوة 2.3.2
بسّط الطرف الأيسر.
خطوة 2.3.2.1
ألغِ العامل المشترك لـ .
خطوة 2.3.2.1.1
ألغِ العامل المشترك.
خطوة 2.3.2.1.2
اقسِم على .
خطوة 2.3.3
بسّط الطرف الأيمن.
خطوة 2.3.3.1
اقسِم على .
خطوة 2.4
استخدِم الصيغة التربيعية لإيجاد الحلول.
خطوة 2.5
عوّض بقيم و و في الصيغة التربيعية وأوجِد قيمة .
خطوة 2.6
بسّط.
خطوة 2.6.1
بسّط بَسْط الكسر.
خطوة 2.6.1.1
ارفع إلى القوة .
خطوة 2.6.1.2
اضرب .
خطوة 2.6.1.2.1
اضرب في .
خطوة 2.6.1.2.2
اضرب في .
خطوة 2.6.1.3
اطرح من .
خطوة 2.6.1.4
أعِد كتابة بالصيغة .
خطوة 2.6.1.4.1
أخرِج العامل من .
خطوة 2.6.1.4.2
أعِد كتابة بالصيغة .
خطوة 2.6.1.5
أخرِج الحدود من تحت الجذر.
خطوة 2.6.2
اضرب في .
خطوة 2.6.3
بسّط .
خطوة 2.7
بسّط العبارة لإيجاد قيمة الجزء من .
خطوة 2.7.1
بسّط بَسْط الكسر.
خطوة 2.7.1.1
ارفع إلى القوة .
خطوة 2.7.1.2
اضرب .
خطوة 2.7.1.2.1
اضرب في .
خطوة 2.7.1.2.2
اضرب في .
خطوة 2.7.1.3
اطرح من .
خطوة 2.7.1.4
أعِد كتابة بالصيغة .
خطوة 2.7.1.4.1
أخرِج العامل من .
خطوة 2.7.1.4.2
أعِد كتابة بالصيغة .
خطوة 2.7.1.5
أخرِج الحدود من تحت الجذر.
خطوة 2.7.2
اضرب في .
خطوة 2.7.3
بسّط .
خطوة 2.7.4
غيّر إلى .
خطوة 2.8
بسّط العبارة لإيجاد قيمة الجزء من .
خطوة 2.8.1
بسّط بَسْط الكسر.
خطوة 2.8.1.1
ارفع إلى القوة .
خطوة 2.8.1.2
اضرب .
خطوة 2.8.1.2.1
اضرب في .
خطوة 2.8.1.2.2
اضرب في .
خطوة 2.8.1.3
اطرح من .
خطوة 2.8.1.4
أعِد كتابة بالصيغة .
خطوة 2.8.1.4.1
أخرِج العامل من .
خطوة 2.8.1.4.2
أعِد كتابة بالصيغة .
خطوة 2.8.1.5
أخرِج الحدود من تحت الجذر.
خطوة 2.8.2
اضرب في .
خطوة 2.8.3
بسّط .
خطوة 2.8.4
غيّر إلى .
خطوة 2.9
الإجابة النهائية هي تركيبة من كلا الحلّين.
خطوة 3
خطوة 3.1
عوّض بقيمة في لإيجاد قيمة .
خطوة 3.1.1
استبدِل المتغير بـ في العبارة.
خطوة 3.1.2
بسّط النتيجة.
خطوة 3.1.2.1
ارفع إلى القوة .
خطوة 3.1.2.2
اضرب في .
خطوة 3.1.2.3
اطرح من .
خطوة 3.1.2.4
ارفع إلى القوة .
خطوة 3.1.2.5
اضرب في .
خطوة 3.1.2.6
الإجابة النهائية هي .
خطوة 3.2
النقطة التي تم إيجادها بالتعويض بـ في هي . ويمكن أن تكون هذه النقطة نقطة انقلاب.
خطوة 3.3
عوّض بقيمة في لإيجاد قيمة .
خطوة 3.3.1
استبدِل المتغير بـ في العبارة.
خطوة 3.3.2
بسّط النتيجة.
خطوة 3.3.2.1
ارفع إلى القوة .
خطوة 3.3.2.2
اضرب في .
خطوة 3.3.2.3
اطرح من .
خطوة 3.3.2.4
ارفع إلى القوة .
خطوة 3.3.2.5
اضرب في .
خطوة 3.3.2.6
الإجابة النهائية هي .
خطوة 3.4
النقطة التي تم إيجادها بالتعويض بـ في هي . ويمكن أن تكون هذه النقطة نقطة انقلاب.
خطوة 3.5
حدد النقاط التي يمكن أن تكون نقاط انقلاب.
خطوة 4
قسّم إلى فترات حول النقاط التي من المحتمل أن تكون نقاط انقلاب.
خطوة 5
خطوة 5.1
استبدِل المتغير بـ في العبارة.
خطوة 5.2
بسّط النتيجة.
خطوة 5.2.1
بسّط كل حد.
خطوة 5.2.1.1
ارفع إلى القوة .
خطوة 5.2.1.2
اضرب في .
خطوة 5.2.1.3
اضرب في .
خطوة 5.2.2
بسّط عن طريق الجمع والطرح.
خطوة 5.2.2.1
اطرح من .
خطوة 5.2.2.2
أضف و.
خطوة 5.2.3
الإجابة النهائية هي .
خطوة 5.3
في ، المشتق الثاني هو . نظرًا إلى أن هذا موجب، فإن المشتق الثاني يتزايد على مدى الفترة .
تزايد خلال نظرًا إلى أن
تزايد خلال نظرًا إلى أن
خطوة 6
خطوة 6.1
استبدِل المتغير بـ في العبارة.
خطوة 6.2
بسّط النتيجة.
خطوة 6.2.1
بسّط كل حد.
خطوة 6.2.1.1
ارفع إلى القوة .
خطوة 6.2.1.2
اضرب في .
خطوة 6.2.1.3
اضرب في .
خطوة 6.2.2
بسّط عن طريق الجمع والطرح.
خطوة 6.2.2.1
اطرح من .
خطوة 6.2.2.2
أضف و.
خطوة 6.2.3
الإجابة النهائية هي .
خطوة 6.3
المشتق الثاني عند يساوي . وبما أنه سالب، فإن المشتق الثاني يتناقص خلال الفترة
تناقص خلال حيث إن
تناقص خلال حيث إن
خطوة 7
خطوة 7.1
استبدِل المتغير بـ في العبارة.
خطوة 7.2
بسّط النتيجة.
خطوة 7.2.1
بسّط كل حد.
خطوة 7.2.1.1
ارفع إلى القوة .
خطوة 7.2.1.2
اضرب في .
خطوة 7.2.1.3
اضرب في .
خطوة 7.2.2
بسّط عن طريق الجمع والطرح.
خطوة 7.2.2.1
اطرح من .
خطوة 7.2.2.2
أضف و.
خطوة 7.2.3
الإجابة النهائية هي .
خطوة 7.3
في ، المشتق الثاني هو . نظرًا إلى أن هذا موجب، فإن المشتق الثاني يتزايد على مدى الفترة .
تزايد خلال نظرًا إلى أن
تزايد خلال نظرًا إلى أن
خطوة 8
نقطة الانقلاب هي نقطة على منحنى يغيّر التقعر عندها العلامة من موجب إلى سالب أو من سالب إلى موجب. نقاط الانقلاب في هذه الحالة هي .
خطوة 9