حساب التفاضل والتكامل الأمثلة

خطوة 1
اكتب في صورة دالة.
خطوة 2
يمكن إيجاد الدالة بإيجاد التكامل غير المحدد للمشتق .
خطوة 3
عيّن التكامل لإيجاد الحل.
خطوة 4
لنفترض أن . إذن ، لذا . أعِد الكتابة باستخدام و.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
افترض أن . أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 4.1.1
أوجِد مشتقة .
خطوة 4.1.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 4.1.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.1.4
اضرب في .
خطوة 4.2
أعِد كتابة المسألة باستخدام و.
خطوة 5
اجمع و.
خطوة 6
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 7
استخدِم قاعدة نصف الزاوية لإعادة كتابة بحيث تصبح .
خطوة 8
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 9
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 9.1
اضرب في .
خطوة 9.2
اضرب في .
خطوة 10
قسّم التكامل الواحد إلى عدة تكاملات.
خطوة 11
طبّق قاعدة الثابت.
خطوة 12
لنفترض أن . إذن ، لذا . أعِد الكتابة باستخدام و.
انقر لعرض المزيد من الخطوات...
خطوة 12.1
افترض أن . أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 12.1.1
أوجِد مشتقة .
خطوة 12.1.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 12.1.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 12.1.4
اضرب في .
خطوة 12.2
أعِد كتابة المسألة باستخدام و.
خطوة 13
اجمع و.
خطوة 14
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 15
تكامل بالنسبة إلى هو .
خطوة 16
بسّط.
خطوة 17
عوّض مجددًا بقيمة كل متغير في التكامل بالتعويض.
انقر لعرض المزيد من الخطوات...
خطوة 17.1
استبدِل كافة حالات حدوث بـ .
خطوة 17.2
استبدِل كافة حالات حدوث بـ .
خطوة 17.3
استبدِل كافة حالات حدوث بـ .
خطوة 18
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 18.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 18.1.1
اضرب في .
خطوة 18.1.2
اجمع و.
خطوة 18.2
طبّق خاصية التوزيع.
خطوة 18.3
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 18.3.1
أخرِج العامل من .
خطوة 18.3.2
أخرِج العامل من .
خطوة 18.3.3
ألغِ العامل المشترك.
خطوة 18.3.4
أعِد كتابة العبارة.
خطوة 18.4
اجمع و.
خطوة 18.5
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 18.5.1
اضرب في .
خطوة 18.5.2
اضرب في .
خطوة 19
أعِد ترتيب الحدود.
خطوة 20
الإجابة هي المشتق العكسي للدالة .