حساب التفاضل والتكامل الأمثلة

أوجد عكس المشتق (sin(x)+cos(x))^2
خطوة 1
اكتب في صورة دالة.
خطوة 2
يمكن إيجاد الدالة بإيجاد التكامل غير المحدد للمشتق .
خطوة 3
عيّن التكامل لإيجاد الحل.
خطوة 4
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
أعِد كتابة بالصيغة .
خطوة 4.2
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1
طبّق خاصية التوزيع.
خطوة 4.2.2
طبّق خاصية التوزيع.
خطوة 4.2.3
طبّق خاصية التوزيع.
خطوة 4.3
بسّط ووحّد الحدود المتشابهة.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.1.1
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 4.3.1.1.1
ارفع إلى القوة .
خطوة 4.3.1.1.2
ارفع إلى القوة .
خطوة 4.3.1.1.3
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 4.3.1.1.4
أضف و.
خطوة 4.3.1.2
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 4.3.1.2.1
ارفع إلى القوة .
خطوة 4.3.1.2.2
ارفع إلى القوة .
خطوة 4.3.1.2.3
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 4.3.1.2.4
أضف و.
خطوة 4.3.2
أعِد ترتيب عوامل .
خطوة 4.3.3
أضف و.
خطوة 4.4
انقُل .
خطوة 4.5
طبّق متطابقة فيثاغورس.
خطوة 4.6
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 4.6.1
أعِد ترتيب و.
خطوة 4.6.2
أعِد ترتيب و.
خطوة 4.6.3
طبّق متطابقة ضعف الزاوية للجيب.
خطوة 5
قسّم التكامل الواحد إلى عدة تكاملات.
خطوة 6
طبّق قاعدة الثابت.
خطوة 7
لنفترض أن . إذن ، لذا . أعِد الكتابة باستخدام و.
انقر لعرض المزيد من الخطوات...
خطوة 7.1
افترض أن . أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 7.1.1
أوجِد مشتقة .
خطوة 7.1.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 7.1.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 7.1.4
اضرب في .
خطوة 7.2
أعِد كتابة المسألة باستخدام و.
خطوة 8
اجمع و.
خطوة 9
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 10
تكامل بالنسبة إلى هو .
خطوة 11
بسّط.
خطوة 12
استبدِل كافة حالات حدوث بـ .
خطوة 13
أعِد ترتيب الحدود.
خطوة 14
الإجابة هي المشتق العكسي للدالة .