حساب التفاضل والتكامل الأمثلة

قيّم باستخدام قاعدة لوبيتال النهاية عند اقتراب x من 3 لـ (9-x^2)/(cos(pi/2x))
خطوة 1
احسِب قيمة حد بسط الكسر وحد القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
خُذ نهاية بسط الكسر ونهاية القاسم.
خطوة 1.2
احسِب قيمة حد بسط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
احسِب قيمة النهاية.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1.1
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 1.2.1.2
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 1.2.1.3
انقُل الأُس من خارج النهاية باستخدام قاعدة القوة للنهايات.
خطوة 1.2.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 1.2.3
بسّط الإجابة.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.3.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.3.1.1
ارفع إلى القوة .
خطوة 1.2.3.1.2
اضرب في .
خطوة 1.2.3.2
اطرح من .
خطوة 1.3
احسِب قيمة حد القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1
احسِب قيمة النهاية.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1.1
انقُل النهاية داخل الدالة المثلثية نظرًا إلى أن دالة جيب التمام متصلة.
خطوة 1.3.1.2
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 1.3.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 1.3.3
بسّط الإجابة.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.3.1
اجمع و.
خطوة 1.3.3.2
انقُل إلى يسار .
خطوة 1.3.3.3
طبّق زاوية المرجع بإيجاد الزاوية ذات القيم المثلثية المكافئة في الربع الأول.
خطوة 1.3.3.4
القيمة الدقيقة لـ هي .
خطوة 1.3.3.5
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 1.3.4
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 1.4
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 2
بما أن مكتوبة بصيغة غير معيّنة، طبّق قاعدة لوبيتال. تنص قاعدة لوبيتال على أن نهاية ناتج قسمة الدوال يساوي نهاية ناتج قسمة مشتقاتها.
خطوة 3
أوجِد مشتق بسط الكسر والقاسم.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
أوجِد مشتقة البسط والقاسم.
خطوة 3.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.3
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 3.4
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.4.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.4.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.4.3
اضرب في .
خطوة 3.5
اطرح من .
خطوة 3.6
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 3.6.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 3.6.2
مشتق بالنسبة إلى يساوي .
خطوة 3.6.3
استبدِل كافة حالات حدوث بـ .
خطوة 3.7
اجمع و.
خطوة 3.8
اجمع و.
خطوة 3.9
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.10
اجمع و.
خطوة 3.11
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.12
اضرب في .
خطوة 4
اضرب بسط الكسر في مقلوب القاسم.
خطوة 5
جمّع العوامل.
انقر لعرض المزيد من الخطوات...
خطوة 5.1
اضرب في .
خطوة 5.2
اجمع و.
خطوة 5.3
اضرب في .
خطوة 5.4
اجمع و.
خطوة 6
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 7
قسّم النهاية بتطبيق قاعدة قسمة النهايات على النهاية بينما يقترب من .
خطوة 8
انقُل النهاية داخل الدالة المثلثية نظرًا إلى أن دالة الجيب متصلة.
خطوة 9
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 10
احسِب قيم الحدود بالتعويض عن جميع حالات حدوث بـ .
انقر لعرض المزيد من الخطوات...
خطوة 10.1
احسِب قيمة حد بالتعويض عن بـ .
خطوة 10.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 11
بسّط الإجابة.
انقر لعرض المزيد من الخطوات...
خطوة 11.1
افصِل الكسور.
خطوة 11.2
حوّل من إلى .
خطوة 11.3
اقسِم على .
خطوة 11.4
اجمع و.
خطوة 11.5
انقُل إلى يسار .
خطوة 11.6
طبّق زاوية المرجع بإيجاد الزاوية ذات القيم المثلثية المكافئة في الربع الأول. اجعل العبارة سالبة لأن قاطع التمام سالب في الربع الرابع.
خطوة 11.7
القيمة الدقيقة لـ هي .
خطوة 11.8
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 11.8.1
اضرب في .
خطوة 11.8.2
اضرب في .
خطوة 11.9
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 11.9.1
اجمع و.
خطوة 11.9.2
اضرب في .
خطوة 11.10
انقُل السالب أمام الكسر.