إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
خُذ نهاية بسط الكسر ونهاية القاسم.
خطوة 1.2
بما أن الأُس يقترب من ، إذن الكمية تقترب من .
خطوة 1.3
عند اقتراب اللوغاريتم من ما لا نهاية، تتجه القيمة إلى .
خطوة 1.4
ناتج قسمة ما لا نهاية على ما لا نهاية يساوي قيمة غير معرّفة.
غير معرّف
خطوة 2
بما أن مكتوبة بصيغة غير معيّنة، طبّق قاعدة لوبيتال. تنص قاعدة لوبيتال على أن نهاية ناتج قسمة الدوال يساوي نهاية ناتج قسمة مشتقاتها.
خطوة 3
خطوة 3.1
أوجِد مشتقة البسط والقاسم.
خطوة 3.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 3.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 3.2.2
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 3.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 3.3
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.5
اضرب في .
خطوة 3.6
انقُل إلى يسار .
خطوة 3.7
اضرب في .
خطوة 3.8
مشتق بالنسبة إلى يساوي .
خطوة 4
اضرب بسط الكسر في مقلوب القاسم.
خطوة 5
خطوة 5.1
قسّم النهاية بتطبيق قاعدة حاصل ضرب النهايات على النهاية بينما يقترب من .
خطوة 5.2
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 6
بما أن الأُس يقترب من ، إذن الكمية تقترب من .
خطوة 7
خطوة 7.1
النهاية عند ما لا نهاية متعدد حدود معامله الرئيسي موجب تساوي ما لا نهاية.
خطوة 7.2
بسّط الإجابة.
خطوة 7.2.1
حاصل ضرب الثابت غير الصفري في ما لا نهاية يساوي ما لا نهاية.
خطوة 7.2.2
حاصل ضرب ما لا نهاية في ما لا نهاية يساوي ما لا نهاية.