إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
,
خطوة 1
خطوة 1.1
أوجِد المشتق الأول.
خطوة 1.1.1
أوجِد المشتق الأول.
خطوة 1.1.1.1
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 1.1.1.1.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 1.1.1.1.2
مشتق بالنسبة إلى يساوي .
خطوة 1.1.1.1.3
استبدِل كافة حالات حدوث بـ .
خطوة 1.1.1.2
أوجِد المشتقة.
خطوة 1.1.1.2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.1.2.3
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.1.2.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.1.2.5
اضرب في .
خطوة 1.1.1.2.6
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.1.2.7
أضف و.
خطوة 1.1.1.3
بسّط.
خطوة 1.1.1.3.1
أعِد ترتيب عوامل .
خطوة 1.1.1.3.2
اضرب في .
خطوة 1.1.2
المشتق الأول لـ بالنسبة إلى هو .
خطوة 1.2
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ ثم أوجِد حل المعادلة .
خطوة 1.2.1
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ .
خطوة 1.2.2
عيّن قيمة بسط الكسر بحيث تصبح مساوية لصفر.
خطوة 1.2.3
أوجِد قيمة في المعادلة.
خطوة 1.2.3.1
اطرح من كلا المتعادلين.
خطوة 1.2.3.2
اقسِم كل حد في على وبسّط.
خطوة 1.2.3.2.1
اقسِم كل حد في على .
خطوة 1.2.3.2.2
بسّط الطرف الأيسر.
خطوة 1.2.3.2.2.1
ألغِ العامل المشترك لـ .
خطوة 1.2.3.2.2.1.1
ألغِ العامل المشترك.
خطوة 1.2.3.2.2.1.2
اقسِم على .
خطوة 1.2.3.2.3
بسّط الطرف الأيمن.
خطوة 1.2.3.2.3.1
انقُل السالب أمام الكسر.
خطوة 1.3
أوجِد القيم التي يكون عندها المشتق غير معرّف.
خطوة 1.3.1
نطاق العبارة هو جميع الأعداد الحقيقية ما عدا ما يجعل العبارة غير معرّفة. في هذه الحالة، لا يوجد عدد حقيقي يجعل العبارة غير معرّفة.
خطوة 1.4
احسِب قيمة عند كل قيمة يكون عندها المشتق مساويًا لـ أو غير معرّف.
خطوة 1.4.1
احسِب القيمة في .
خطوة 1.4.1.1
عوّض بقيمة التي تساوي .
خطوة 1.4.1.2
بسّط.
خطوة 1.4.1.2.1
بسّط كل حد.
خطوة 1.4.1.2.1.1
استخدِم قاعدة القوة لتوزيع الأُس.
خطوة 1.4.1.2.1.1.1
طبّق قاعدة الضرب على .
خطوة 1.4.1.2.1.1.2
طبّق قاعدة الضرب على .
خطوة 1.4.1.2.1.2
ارفع إلى القوة .
خطوة 1.4.1.2.1.3
اضرب في .
خطوة 1.4.1.2.1.4
ارفع إلى القوة .
خطوة 1.4.1.2.1.5
ارفع إلى القوة .
خطوة 1.4.1.2.1.6
اضرب .
خطوة 1.4.1.2.1.6.1
اضرب في .
خطوة 1.4.1.2.1.6.2
اجمع و.
خطوة 1.4.1.2.1.6.3
اضرب في .
خطوة 1.4.1.2.1.7
انقُل السالب أمام الكسر.
خطوة 1.4.1.2.2
أوجِد القاسم المشترك.
خطوة 1.4.1.2.2.1
اضرب في .
خطوة 1.4.1.2.2.2
اضرب في .
خطوة 1.4.1.2.2.3
اكتب على هيئة كسر قاسمه .
خطوة 1.4.1.2.2.4
اضرب في .
خطوة 1.4.1.2.2.5
اضرب في .
خطوة 1.4.1.2.2.6
اضرب في .
خطوة 1.4.1.2.3
اجمع البسوط على القاسم المشترك.
خطوة 1.4.1.2.4
بسّط كل حد.
خطوة 1.4.1.2.4.1
اضرب في .
خطوة 1.4.1.2.4.2
اضرب في .
خطوة 1.4.1.2.5
بسّط عن طريق الجمع والطرح.
خطوة 1.4.1.2.5.1
اطرح من .
خطوة 1.4.1.2.5.2
أضف و.
خطوة 1.4.2
اسرِد جميع النقاط.
خطوة 2
خطوة 2.1
احسِب القيمة في .
خطوة 2.1.1
عوّض بقيمة التي تساوي .
خطوة 2.1.2
بسّط.
خطوة 2.1.2.1
بسّط كل حد.
خطوة 2.1.2.1.1
ارفع إلى القوة .
خطوة 2.1.2.1.2
اضرب في .
خطوة 2.1.2.2
بسّط عن طريق الجمع والطرح.
خطوة 2.1.2.2.1
اطرح من .
خطوة 2.1.2.2.2
أضف و.
خطوة 2.2
احسِب القيمة في .
خطوة 2.2.1
عوّض بقيمة التي تساوي .
خطوة 2.2.2
بسّط.
خطوة 2.2.2.1
بسّط كل حد.
خطوة 2.2.2.1.1
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 2.2.2.1.2
اضرب في .
خطوة 2.2.2.2
بسّط بجمع الأعداد.
خطوة 2.2.2.2.1
أضف و.
خطوة 2.2.2.2.2
أضف و.
خطوة 2.3
اسرِد جميع النقاط.
خطوة 3
قارن قيم الموجودة لكل قيمة من قيم من أجل تحديد الحد الأقصى والحد الأدنى المطلق على مدى الفترة الزمنية المحددة. سيظهر الحد الأقصى بأعلى قيمة وسيظهر الحد الأدنى بأقل قيمة .
الحد الأقصى المطلق:
الحد الأدنى المطلق:
خطوة 4