إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
اكتب في صورة دالة.
خطوة 2
يمكن إيجاد الدالة بإيجاد التكامل غير المحدد للمشتق .
خطوة 3
عيّن التكامل لإيجاد الحل.
خطوة 4
قسّم التكامل الواحد إلى عدة تكاملات.
خطوة 5
طبّق قاعدة الثابت.
خطوة 6
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 7
لنفترض أن ، حيث . إذن . لاحظ أنه نظرًا إلى أن ، إذن تُعد موجبة.
خطوة 8
خطوة 8.1
بسّط .
خطوة 8.1.1
طبّق متطابقة فيثاغورس.
خطوة 8.1.2
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
خطوة 8.2
بسّط.
خطوة 8.2.1
ارفع إلى القوة .
خطوة 8.2.2
ارفع إلى القوة .
خطوة 8.2.3
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 8.2.4
أضف و.
خطوة 9
استخدِم قاعدة نصف الزاوية لإعادة كتابة بحيث تصبح .
خطوة 10
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 11
قسّم التكامل الواحد إلى عدة تكاملات.
خطوة 12
طبّق قاعدة الثابت.
خطوة 13
خطوة 13.1
افترض أن . أوجِد .
خطوة 13.1.1
أوجِد مشتقة .
خطوة 13.1.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 13.1.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 13.1.4
اضرب في .
خطوة 13.2
أعِد كتابة المسألة باستخدام و.
خطوة 14
اجمع و.
خطوة 15
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 16
تكامل بالنسبة إلى هو .
خطوة 17
بسّط.
خطوة 18
خطوة 18.1
استبدِل كافة حالات حدوث بـ .
خطوة 18.2
استبدِل كافة حالات حدوث بـ .
خطوة 18.3
استبدِل كافة حالات حدوث بـ .
خطوة 19
خطوة 19.1
اجمع و.
خطوة 19.2
طبّق خاصية التوزيع.
خطوة 19.3
اجمع و.
خطوة 19.4
اضرب .
خطوة 19.4.1
اضرب في .
خطوة 19.4.2
اضرب في .
خطوة 20
أعِد ترتيب الحدود.
خطوة 21
الإجابة هي المشتق العكسي للدالة .