إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
أوجِد المشتق الأول.
خطوة 1.1.1
أوجِد المشتقة باستخدام قاعدة القسمة التي تنص على أن هو حيث و.
خطوة 1.1.2
أوجِد المشتقة.
خطوة 1.1.2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.2.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.2.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.2.4
اضرب في .
خطوة 1.1.2.5
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.2.6
بسّط العبارة.
خطوة 1.1.2.6.1
أضف و.
خطوة 1.1.2.6.2
انقُل إلى يسار .
خطوة 1.1.2.7
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.2.8
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.2.9
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.2.10
اضرب في .
خطوة 1.1.2.11
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.2.12
بسّط العبارة.
خطوة 1.1.2.12.1
أضف و.
خطوة 1.1.2.12.2
اضرب في .
خطوة 1.1.3
بسّط.
خطوة 1.1.3.1
طبّق خاصية التوزيع.
خطوة 1.1.3.2
طبّق خاصية التوزيع.
خطوة 1.1.3.3
طبّق خاصية التوزيع.
خطوة 1.1.3.4
طبّق خاصية التوزيع.
خطوة 1.1.3.5
بسّط بَسْط الكسر.
خطوة 1.1.3.5.1
بسّط كل حد.
خطوة 1.1.3.5.1.1
اضرب في بجمع الأُسس.
خطوة 1.1.3.5.1.1.1
انقُل .
خطوة 1.1.3.5.1.1.2
اضرب في .
خطوة 1.1.3.5.1.1.2.1
ارفع إلى القوة .
خطوة 1.1.3.5.1.1.2.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 1.1.3.5.1.1.3
أضف و.
خطوة 1.1.3.5.1.2
اضرب في .
خطوة 1.1.3.5.1.3
اضرب في .
خطوة 1.1.3.5.1.4
اضرب في بجمع الأُسس.
خطوة 1.1.3.5.1.4.1
انقُل .
خطوة 1.1.3.5.1.4.2
اضرب في .
خطوة 1.1.3.5.1.4.2.1
ارفع إلى القوة .
خطوة 1.1.3.5.1.4.2.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 1.1.3.5.1.4.3
أضف و.
خطوة 1.1.3.5.1.5
اضرب في .
خطوة 1.1.3.5.1.6
اضرب في .
خطوة 1.1.3.5.2
جمّع الحدود المتعاكسة في .
خطوة 1.1.3.5.2.1
اطرح من .
خطوة 1.1.3.5.2.2
أضف و.
خطوة 1.1.3.5.3
اطرح من .
خطوة 1.1.3.6
انقُل السالب أمام الكسر.
خطوة 1.1.3.7
بسّط القاسم.
خطوة 1.1.3.7.1
أعِد كتابة بالصيغة .
خطوة 1.1.3.7.2
أعِد كتابة بالصيغة .
خطوة 1.1.3.7.3
بما أن كلا الحدّين هما مربعان كاملان، حلّل إلى عوامل باستخدام قاعدة الفرق بين مربعين، حيث و.
خطوة 1.1.3.7.4
طبّق قاعدة الضرب على .
خطوة 1.2
المشتق الأول لـ بالنسبة إلى هو .
خطوة 2
خطوة 2.1
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ .
خطوة 2.2
عيّن قيمة بسط الكسر بحيث تصبح مساوية لصفر.
خطوة 2.3
اقسِم كل حد في على وبسّط.
خطوة 2.3.1
اقسِم كل حد في على .
خطوة 2.3.2
بسّط الطرف الأيسر.
خطوة 2.3.2.1
ألغِ العامل المشترك لـ .
خطوة 2.3.2.1.1
ألغِ العامل المشترك.
خطوة 2.3.2.1.2
اقسِم على .
خطوة 2.3.3
بسّط الطرف الأيمن.
خطوة 2.3.3.1
اقسِم على .
خطوة 3
القيم التي تجعل المشتق مساويًا لـ هي .
خطوة 4
خطوة 4.1
عيّن قيمة القاسم في بحيث تصبح مساوية لـ لإيجاد الموضع الذي تكون فيه العبارة غير معرّفة.
خطوة 4.2
أوجِد قيمة .
خطوة 4.2.1
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 4.2.2
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 4.2.2.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 4.2.2.2
أوجِد قيمة في .
خطوة 4.2.2.2.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 4.2.2.2.2
أوجِد قيمة .
خطوة 4.2.2.2.2.1
اطرح من كلا المتعادلين.
خطوة 4.2.2.2.2.2
اقسِم كل حد في على وبسّط.
خطوة 4.2.2.2.2.2.1
اقسِم كل حد في على .
خطوة 4.2.2.2.2.2.2
بسّط الطرف الأيسر.
خطوة 4.2.2.2.2.2.2.1
ألغِ العامل المشترك لـ .
خطوة 4.2.2.2.2.2.2.1.1
ألغِ العامل المشترك.
خطوة 4.2.2.2.2.2.2.1.2
اقسِم على .
خطوة 4.2.2.2.2.2.3
بسّط الطرف الأيمن.
خطوة 4.2.2.2.2.2.3.1
انقُل السالب أمام الكسر.
خطوة 4.2.3
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 4.2.3.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 4.2.3.2
أوجِد قيمة في .
خطوة 4.2.3.2.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 4.2.3.2.2
أوجِد قيمة .
خطوة 4.2.3.2.2.1
أضف إلى كلا المتعادلين.
خطوة 4.2.3.2.2.2
اقسِم كل حد في على وبسّط.
خطوة 4.2.3.2.2.2.1
اقسِم كل حد في على .
خطوة 4.2.3.2.2.2.2
بسّط الطرف الأيسر.
خطوة 4.2.3.2.2.2.2.1
ألغِ العامل المشترك لـ .
خطوة 4.2.3.2.2.2.2.1.1
ألغِ العامل المشترك.
خطوة 4.2.3.2.2.2.2.1.2
اقسِم على .
خطوة 4.2.4
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 4.3
تصبح المعادلة غير معرّفة عندما يكون القاسم مساويًا لـ ، أو عندما يكون المتغير المستقل للجذر التربيعي أصغر من ، أو عندما يكون المتغير المستقل للوغاريتم أصغر من أو يساوي .
خطوة 5
قسّم إلى فترات منفصلة حول قيم التي تجعل المشتق يساوي أو التي تجعله غير معرّف.
خطوة 6
خطوة 6.1
استبدِل المتغير بـ في العبارة.
خطوة 6.2
بسّط النتيجة.
خطوة 6.2.1
اضرب في .
خطوة 6.2.2
بسّط القاسم.
خطوة 6.2.2.1
اضرب في .
خطوة 6.2.2.2
أضف و.
خطوة 6.2.2.3
اضرب في .
خطوة 6.2.2.4
اطرح من .
خطوة 6.2.2.5
ارفع إلى القوة .
خطوة 6.2.2.6
ارفع إلى القوة .
خطوة 6.2.3
بسّط العبارة.
خطوة 6.2.3.1
اضرب في .
خطوة 6.2.3.2
اقسِم على .
خطوة 6.2.3.3
اضرب في .
خطوة 6.2.4
الإجابة النهائية هي .
خطوة 6.3
المشتق في هو . نظرًا إلى أن هذا موجب، فإن الدالة تتزايد خلال .
تزايد خلال نظرًا إلى أن
تزايد خلال نظرًا إلى أن
خطوة 7
خطوة 7.1
استبدِل المتغير بـ في العبارة.
خطوة 7.2
بسّط النتيجة.
خطوة 7.2.1
اضرب في .
خطوة 7.2.2
بسّط القاسم.
خطوة 7.2.2.1
اضرب في .
خطوة 7.2.2.2
أضف و.
خطوة 7.2.2.3
اضرب في .
خطوة 7.2.2.4
اطرح من .
خطوة 7.2.2.5
ارفع إلى القوة .
خطوة 7.2.2.6
ارفع إلى القوة .
خطوة 7.2.3
بسّط العبارة.
خطوة 7.2.3.1
اضرب في .
خطوة 7.2.3.2
اقسِم على .
خطوة 7.2.3.3
اضرب في .
خطوة 7.2.4
الإجابة النهائية هي .
خطوة 7.3
المشتق في هو . نظرًا إلى أن هذا موجب، فإن الدالة تتزايد خلال .
تزايد خلال نظرًا إلى أن
تزايد خلال نظرًا إلى أن
خطوة 8
خطوة 8.1
استبدِل المتغير بـ في العبارة.
خطوة 8.2
بسّط النتيجة.
خطوة 8.2.1
اضرب في .
خطوة 8.2.2
بسّط القاسم.
خطوة 8.2.2.1
اضرب في .
خطوة 8.2.2.2
أضف و.
خطوة 8.2.2.3
اضرب في .
خطوة 8.2.2.4
اطرح من .
خطوة 8.2.2.5
ارفع إلى القوة .
خطوة 8.2.2.6
ارفع إلى القوة .
خطوة 8.2.3
بسّط العبارة.
خطوة 8.2.3.1
اضرب في .
خطوة 8.2.3.2
اقسِم على .
خطوة 8.2.3.3
اضرب في .
خطوة 8.2.4
الإجابة النهائية هي .
خطوة 8.3
المشتق في هو . نظرًا إلى أن هذا سالب، فإن الدالة تتناقص خلال .
تناقص خلال حيث إن
تناقص خلال حيث إن
خطوة 9
خطوة 9.1
استبدِل المتغير بـ في العبارة.
خطوة 9.2
بسّط النتيجة.
خطوة 9.2.1
اضرب في .
خطوة 9.2.2
بسّط القاسم.
خطوة 9.2.2.1
اضرب في .
خطوة 9.2.2.2
أضف و.
خطوة 9.2.2.3
اضرب في .
خطوة 9.2.2.4
اطرح من .
خطوة 9.2.2.5
ارفع إلى القوة .
خطوة 9.2.2.6
ارفع إلى القوة .
خطوة 9.2.3
بسّط العبارة.
خطوة 9.2.3.1
اضرب في .
خطوة 9.2.3.2
اقسِم على .
خطوة 9.2.3.3
اضرب في .
خطوة 9.2.4
الإجابة النهائية هي .
خطوة 9.3
المشتق في هو . نظرًا إلى أن هذا سالب، فإن الدالة تتناقص خلال .
تناقص خلال حيث إن
تناقص خلال حيث إن
خطوة 10
اسرِد الفترات التي تتزايد الدالة وتتناقص فيها.
تزايد خلال:
تناقص خلال:
خطوة 11