إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
أوجِد المشتق الأول.
خطوة 1.1.1
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 1.1.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 1.1.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 1.1.2.2
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 1.1.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 1.1.3
أوجِد المشتقة.
خطوة 1.1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.3.3
بسّط العبارة.
خطوة 1.1.3.3.1
اضرب في .
خطوة 1.1.3.3.2
انقُل إلى يسار .
خطوة 1.1.3.4
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.3.5
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.3.6
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.3.7
بسّط العبارة.
خطوة 1.1.3.7.1
أضف و.
خطوة 1.1.3.7.2
اضرب في .
خطوة 1.1.4
بسّط.
خطوة 1.1.4.1
طبّق خاصية التوزيع.
خطوة 1.1.4.2
طبّق خاصية التوزيع.
خطوة 1.1.4.3
جمّع الحدود.
خطوة 1.1.4.3.1
اضرب في .
خطوة 1.1.4.3.2
أضف و.
خطوة 1.1.4.4
أعِد ترتيب الحدود.
خطوة 1.1.4.5
أعِد ترتيب العوامل في .
خطوة 1.2
المشتق الأول لـ بالنسبة إلى هو .
خطوة 2
خطوة 2.1
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ .
خطوة 2.2
أخرِج العامل من .
خطوة 2.2.1
أخرِج العامل من .
خطوة 2.2.2
أخرِج العامل من .
خطوة 2.2.3
أخرِج العامل من .
خطوة 2.3
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 2.4
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 2.4.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.4.2
أوجِد قيمة في .
خطوة 2.4.2.1
خُذ اللوغاريتم الطبيعي لكلا المتعادلين لحذف المتغير من الأُس.
خطوة 2.4.2.2
لا يمكن حل المعادلة لأن غير معرّفة.
غير معرّف
خطوة 2.4.2.3
لا يوجد حل لـ
لا يوجد حل
لا يوجد حل
لا يوجد حل
خطوة 2.5
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 2.5.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.5.2
أوجِد قيمة في .
خطوة 2.5.2.1
اطرح من كلا المتعادلين.
خطوة 2.5.2.2
اقسِم كل حد في على وبسّط.
خطوة 2.5.2.2.1
اقسِم كل حد في على .
خطوة 2.5.2.2.2
بسّط الطرف الأيسر.
خطوة 2.5.2.2.2.1
ألغِ العامل المشترك لـ .
خطوة 2.5.2.2.2.1.1
ألغِ العامل المشترك.
خطوة 2.5.2.2.2.1.2
اقسِم على .
خطوة 2.5.2.2.3
بسّط الطرف الأيمن.
خطوة 2.5.2.2.3.1
قسمة قيمتين سالبتين على بعضهما البعض ينتج عنها قيمة موجبة.
خطوة 2.6
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 3
القيم التي تجعل المشتق مساويًا لـ هي .
خطوة 4
بعد إيجاد النقطة التي تجعل المشتق مساويًا لـ أو غير معرف، تكون الفترة اللازمة للتحقق من أين تتزايد وأين تتناقص هو .
خطوة 5
خطوة 5.1
استبدِل المتغير بـ في العبارة.
خطوة 5.2
بسّط النتيجة.
خطوة 5.2.1
بسّط كل حد.
خطوة 5.2.1.1
ألغِ العامل المشترك لـ .
خطوة 5.2.1.1.1
أخرِج العامل من .
خطوة 5.2.1.1.2
ألغِ العامل المشترك.
خطوة 5.2.1.1.3
أعِد كتابة العبارة.
خطوة 5.2.1.2
اضرب في .
خطوة 5.2.1.3
ألغِ العامل المشترك لـ .
خطوة 5.2.1.3.1
أخرِج العامل من .
خطوة 5.2.1.3.2
ألغِ العامل المشترك.
خطوة 5.2.1.3.3
أعِد كتابة العبارة.
خطوة 5.2.1.4
اضرب في .
خطوة 5.2.1.5
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
خطوة 5.2.1.6
اجمع و.
خطوة 5.2.1.7
انقُل السالب أمام الكسر.
خطوة 5.2.1.8
ألغِ العامل المشترك لـ .
خطوة 5.2.1.8.1
أخرِج العامل من .
خطوة 5.2.1.8.2
ألغِ العامل المشترك.
خطوة 5.2.1.8.3
أعِد كتابة العبارة.
خطوة 5.2.1.9
اضرب في .
خطوة 5.2.1.10
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
خطوة 5.2.1.11
اجمع و.
خطوة 5.2.2
اجمع الكسور.
خطوة 5.2.2.1
اجمع البسوط على القاسم المشترك.
خطوة 5.2.2.2
أضف و.
خطوة 5.2.3
الإجابة النهائية هي .
خطوة 5.3
المشتق في هو . نظرًا إلى أن هذا موجب، فإن الدالة تتزايد خلال .
تزايد خلال نظرًا إلى أن
تزايد خلال نظرًا إلى أن
خطوة 6
خطوة 6.1
استبدِل المتغير بـ في العبارة.
خطوة 6.2
بسّط النتيجة.
خطوة 6.2.1
بسّط كل حد.
خطوة 6.2.1.1
ألغِ العامل المشترك لـ .
خطوة 6.2.1.1.1
أخرِج العامل من .
خطوة 6.2.1.1.2
ألغِ العامل المشترك.
خطوة 6.2.1.1.3
أعِد كتابة العبارة.
خطوة 6.2.1.2
اضرب في .
خطوة 6.2.1.3
ألغِ العامل المشترك لـ .
خطوة 6.2.1.3.1
أخرِج العامل من .
خطوة 6.2.1.3.2
ألغِ العامل المشترك.
خطوة 6.2.1.3.3
أعِد كتابة العبارة.
خطوة 6.2.1.4
اضرب في .
خطوة 6.2.1.5
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
خطوة 6.2.1.6
اجمع و.
خطوة 6.2.1.7
انقُل السالب أمام الكسر.
خطوة 6.2.1.8
ألغِ العامل المشترك لـ .
خطوة 6.2.1.8.1
أخرِج العامل من .
خطوة 6.2.1.8.2
ألغِ العامل المشترك.
خطوة 6.2.1.8.3
أعِد كتابة العبارة.
خطوة 6.2.1.9
اضرب في .
خطوة 6.2.1.10
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
خطوة 6.2.1.11
اجمع و.
خطوة 6.2.2
اجمع الكسور.
خطوة 6.2.2.1
اجمع البسوط على القاسم المشترك.
خطوة 6.2.2.2
بسّط العبارة.
خطوة 6.2.2.2.1
أضف و.
خطوة 6.2.2.2.2
انقُل السالب أمام الكسر.
خطوة 6.2.3
الإجابة النهائية هي .
خطوة 6.3
المشتق في هو . نظرًا إلى أن هذا سالب، فإن الدالة تتناقص خلال .
تناقص خلال حيث إن
تناقص خلال حيث إن
خطوة 7
اسرِد الفترات التي تتزايد الدالة وتتناقص فيها.
تزايد خلال:
تناقص خلال:
خطوة 8