إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
أوجِد المشتق الأول.
خطوة 1.1.1
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 1.1.1.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 1.1.1.2
مشتق بالنسبة إلى يساوي .
خطوة 1.1.1.3
استبدِل كافة حالات حدوث بـ .
خطوة 1.1.2
أوجِد المشتقة.
خطوة 1.1.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.2.3
بسّط العبارة.
خطوة 1.1.2.3.1
اضرب في .
خطوة 1.1.2.3.2
أعِد ترتيب عوامل .
خطوة 1.2
المشتق الأول لـ بالنسبة إلى هو .
خطوة 2
خطوة 2.1
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ .
خطوة 2.2
اقسِم كل حد في على وبسّط.
خطوة 2.2.1
اقسِم كل حد في على .
خطوة 2.2.2
بسّط الطرف الأيسر.
خطوة 2.2.2.1
قسمة قيمتين سالبتين على بعضهما البعض ينتج عنها قيمة موجبة.
خطوة 2.2.2.2
ألغِ العامل المشترك لـ .
خطوة 2.2.2.2.1
ألغِ العامل المشترك.
خطوة 2.2.2.2.2
اقسِم على .
خطوة 2.2.3
بسّط الطرف الأيمن.
خطوة 2.2.3.1
اقسِم على .
خطوة 2.3
خُذ الجيب العكسي لكلا المتعادلين لاستخراج من داخل الجيب.
خطوة 2.4
بسّط الطرف الأيمن.
خطوة 2.4.1
القيمة الدقيقة لـ هي .
خطوة 2.5
اقسِم كل حد في على وبسّط.
خطوة 2.5.1
اقسِم كل حد في على .
خطوة 2.5.2
بسّط الطرف الأيسر.
خطوة 2.5.2.1
ألغِ العامل المشترك لـ .
خطوة 2.5.2.1.1
ألغِ العامل المشترك.
خطوة 2.5.2.1.2
اقسِم على .
خطوة 2.5.3
بسّط الطرف الأيمن.
خطوة 2.5.3.1
اقسِم على .
خطوة 2.6
دالة الجيب موجبة في الربعين الأول والثاني. لإيجاد الحل الثاني، اطرح زاوية المرجع من لإيجاد الحل في الربع الثاني.
خطوة 2.7
أوجِد قيمة .
خطوة 2.7.1
بسّط.
خطوة 2.7.1.1
اضرب في .
خطوة 2.7.1.2
أضف و.
خطوة 2.7.2
اقسِم كل حد في على وبسّط.
خطوة 2.7.2.1
اقسِم كل حد في على .
خطوة 2.7.2.2
بسّط الطرف الأيسر.
خطوة 2.7.2.2.1
ألغِ العامل المشترك لـ .
خطوة 2.7.2.2.1.1
ألغِ العامل المشترك.
خطوة 2.7.2.2.1.2
اقسِم على .
خطوة 2.7.2.3
بسّط الطرف الأيمن.
خطوة 2.7.2.3.1
ألغِ العامل المشترك لـ .
خطوة 2.7.2.3.1.1
ألغِ العامل المشترك.
خطوة 2.7.2.3.1.2
أعِد كتابة العبارة.
خطوة 2.8
أوجِد فترة .
خطوة 2.8.1
يمكن حساب فترة الدالة باستخدام .
خطوة 2.8.2
استبدِل بـ في القاعدة للفترة.
خطوة 2.8.3
تساوي تقريبًا وهو عدد موجب، لذا أزِل القيمة المطلقة
خطوة 2.8.4
ألغِ العامل المشترك لـ .
خطوة 2.8.4.1
ألغِ العامل المشترك.
خطوة 2.8.4.2
اقسِم على .
خطوة 2.9
فترة دالة هي ، لذا تتكرر القيم كل راديان في كلا الاتجاهين.
، لأي عدد صحيح
خطوة 2.10
وحّد الإجابات.
، لأي عدد صحيح
، لأي عدد صحيح
خطوة 3
خطوة 3.1
نطاق العبارة هو جميع الأعداد الحقيقية ما عدا ما يجعل العبارة غير معرّفة. في هذه الحالة، لا يوجد عدد حقيقي يجعل العبارة غير معرّفة.
خطوة 4
خطوة 4.1
احسِب القيمة في .
خطوة 4.1.1
عوّض بقيمة التي تساوي .
خطوة 4.1.2
بسّط.
خطوة 4.1.2.1
اضرب في .
خطوة 4.1.2.2
القيمة الدقيقة لـ هي .
خطوة 4.2
احسِب القيمة في .
خطوة 4.2.1
عوّض بقيمة التي تساوي .
خطوة 4.2.2
بسّط.
خطوة 4.2.2.1
اضرب في .
خطوة 4.2.2.2
طبّق زاوية المرجع بإيجاد الزاوية ذات القيم المثلثية المكافئة في الربع الأول. اجعل العبارة سالبة لأن جيب التمام سالب في الربع الثاني.
خطوة 4.2.2.3
القيمة الدقيقة لـ هي .
خطوة 4.2.2.4
اضرب في .
خطوة 4.3
اسرِد جميع النقاط.
، لأي عدد صحيح
، لأي عدد صحيح
خطوة 5