حساب التفاضل والتكامل الأمثلة

أوجد نقاط الانعطاف 12x^2-12sin(2x)
خطوة 1
اكتب في صورة دالة.
خطوة 2
أوجِد المشتق الثاني.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.1.2
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.1.2.3
اضرب في .
خطوة 2.1.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.1.3.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.3.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 2.1.3.2.2
مشتق بالنسبة إلى يساوي .
خطوة 2.1.3.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 2.1.3.3
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.1.3.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.1.3.5
اضرب في .
خطوة 2.1.3.6
انقُل إلى يسار .
خطوة 2.1.3.7
اضرب في .
خطوة 2.2
أوجِد المشتق الثاني.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.2.2
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.2.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.2.2.3
اضرب في .
خطوة 2.2.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.2.3.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.3.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 2.2.3.2.2
مشتق بالنسبة إلى يساوي .
خطوة 2.2.3.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 2.2.3.3
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.2.3.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.2.3.5
اضرب في .
خطوة 2.2.3.6
اضرب في .
خطوة 2.2.3.7
اضرب في .
خطوة 2.3
المشتق الثاني لـ بالنسبة إلى هو .
خطوة 3
عيّن قيمة المشتق الثاني بحيث تصبح مساوية لـ ثم حل المعادلة .
انقر لعرض المزيد من الخطوات...
خطوة 3.1
عيّن قيمة المشتق الثاني بحيث تصبح مساوية لـ .
خطوة 3.2
اطرح من كلا المتعادلين.
خطوة 3.3
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1
اقسِم كل حد في على .
خطوة 3.3.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.3.2.1.1
ألغِ العامل المشترك.
خطوة 3.3.2.1.2
اقسِم على .
خطوة 3.3.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.3.1
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.3.1.1
أخرِج العامل من .
خطوة 3.3.3.1.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.3.1.2.1
أخرِج العامل من .
خطوة 3.3.3.1.2.2
ألغِ العامل المشترك.
خطوة 3.3.3.1.2.3
أعِد كتابة العبارة.
خطوة 3.3.3.2
انقُل السالب أمام الكسر.
خطوة 3.4
خُذ الجيب العكسي لكلا المتعادلين لاستخراج من داخل الجيب.
خطوة 3.5
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 3.5.1
القيمة الدقيقة لـ هي .
خطوة 3.6
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 3.6.1
اقسِم كل حد في على .
خطوة 3.6.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.6.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.6.2.1.1
ألغِ العامل المشترك.
خطوة 3.6.2.1.2
اقسِم على .
خطوة 3.6.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 3.6.3.1
اضرب بسط الكسر في مقلوب القاسم.
خطوة 3.6.3.2
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 3.6.3.2.1
اضرب في .
خطوة 3.6.3.2.2
اضرب في .
خطوة 3.7
دالة الجيب سالبة في الربعين الثالث والرابع. لإيجاد الحل الثاني، اطرح الحل من ، لإيجاد زاوية المرجع. وبعد ذلك، اجمع زاوية المرجع المذكورة مع لإيجاد الحل في الربع الثالث.
خطوة 3.8
بسّط العبارة لإيجاد الحل الثاني.
انقر لعرض المزيد من الخطوات...
خطوة 3.8.1
اطرح من .
خطوة 3.8.2
الزاوية الناتجة لـ موجبة وأصغر من ومشتركة النهاية مع .
خطوة 3.8.3
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 3.8.3.1
اقسِم كل حد في على .
خطوة 3.8.3.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.8.3.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.8.3.2.1.1
ألغِ العامل المشترك.
خطوة 3.8.3.2.1.2
اقسِم على .
خطوة 3.8.3.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 3.8.3.3.1
اضرب بسط الكسر في مقلوب القاسم.
خطوة 3.8.3.3.2
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 3.8.3.3.2.1
اضرب في .
خطوة 3.8.3.3.2.2
اضرب في .
خطوة 3.9
أوجِد فترة .
انقر لعرض المزيد من الخطوات...
خطوة 3.9.1
يمكن حساب فترة الدالة باستخدام .
خطوة 3.9.2
استبدِل بـ في القاعدة للفترة.
خطوة 3.9.3
القيمة المطلقة للعدد هي المسافة بين العدد والصفر. المسافة بين و تساوي .
خطوة 3.9.4
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.9.4.1
ألغِ العامل المشترك.
خطوة 3.9.4.2
اقسِم على .
خطوة 3.10
اجمع مع كل زاوية سالبة لإيجاد الزوايا الموجبة.
انقر لعرض المزيد من الخطوات...
خطوة 3.10.1
اجمع مع لإيجاد الزاوية الموجبة.
خطوة 3.10.2
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 3.10.3
اجمع الكسور.
انقر لعرض المزيد من الخطوات...
خطوة 3.10.3.1
اجمع و.
خطوة 3.10.3.2
اجمع البسوط على القاسم المشترك.
خطوة 3.10.4
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.10.4.1
انقُل إلى يسار .
خطوة 3.10.4.2
اطرح من .
خطوة 3.10.5
اسرِد الزوايا الجديدة.
خطوة 3.11
فترة دالة هي ، لذا تتكرر القيم كل راديان في كلا الاتجاهين.
، لأي عدد صحيح
، لأي عدد صحيح
خطوة 4
أوجِد النقاط التي يكون فيها المشتق الثاني هو .
انقر لعرض المزيد من الخطوات...
خطوة 4.1
عوّض بقيمة في لإيجاد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 4.1.1
استبدِل المتغير بـ في العبارة.
خطوة 4.1.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.2.1.1
استخدِم قاعدة القوة لتوزيع الأُس.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.2.1.1.1
طبّق قاعدة الضرب على .
خطوة 4.1.2.1.1.2
طبّق قاعدة الضرب على .
خطوة 4.1.2.1.2
ارفع إلى القوة .
خطوة 4.1.2.1.3
ارفع إلى القوة .
خطوة 4.1.2.1.4
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.1.2.1.4.1
أخرِج العامل من .
خطوة 4.1.2.1.4.2
ألغِ العامل المشترك.
خطوة 4.1.2.1.4.3
أعِد كتابة العبارة.
خطوة 4.1.2.1.5
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.1.2.1.5.1
أخرِج العامل من .
خطوة 4.1.2.1.5.2
ألغِ العامل المشترك.
خطوة 4.1.2.1.5.3
أعِد كتابة العبارة.
خطوة 4.1.2.1.6
طبّق زاوية المرجع بإيجاد الزاوية ذات القيم المثلثية المكافئة في الربع الأول. اجعل العبارة سالبة لأن الجيب سالب في الربع الثالث.
خطوة 4.1.2.1.7
القيمة الدقيقة لـ هي .
خطوة 4.1.2.1.8
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.1.2.1.8.1
انقُل السالب الرئيسي في إلى بسط الكسر.
خطوة 4.1.2.1.8.2
أخرِج العامل من .
خطوة 4.1.2.1.8.3
ألغِ العامل المشترك.
خطوة 4.1.2.1.8.4
أعِد كتابة العبارة.
خطوة 4.1.2.1.9
اضرب في .
خطوة 4.1.2.2
الإجابة النهائية هي .
خطوة 4.2
النقطة التي تم إيجادها بالتعويض بـ في هي . ويمكن أن تكون هذه النقطة نقطة انقلاب.
خطوة 4.3
عوّض بقيمة في لإيجاد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 4.3.1
استبدِل المتغير بـ في العبارة.
خطوة 4.3.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.2.1.1
استخدِم قاعدة القوة لتوزيع الأُس.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.2.1.1.1
طبّق قاعدة الضرب على .
خطوة 4.3.2.1.1.2
طبّق قاعدة الضرب على .
خطوة 4.3.2.1.2
ارفع إلى القوة .
خطوة 4.3.2.1.3
ارفع إلى القوة .
خطوة 4.3.2.1.4
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.3.2.1.4.1
أخرِج العامل من .
خطوة 4.3.2.1.4.2
ألغِ العامل المشترك.
خطوة 4.3.2.1.4.3
أعِد كتابة العبارة.
خطوة 4.3.2.1.5
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.3.2.1.5.1
أخرِج العامل من .
خطوة 4.3.2.1.5.2
ألغِ العامل المشترك.
خطوة 4.3.2.1.5.3
أعِد كتابة العبارة.
خطوة 4.3.2.1.6
طبّق زاوية المرجع بإيجاد الزاوية ذات القيم المثلثية المكافئة في الربع الأول. اجعل العبارة سالبة لأن الجيب سالب في الربع الرابع.
خطوة 4.3.2.1.7
القيمة الدقيقة لـ هي .
خطوة 4.3.2.1.8
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.3.2.1.8.1
انقُل السالب الرئيسي في إلى بسط الكسر.
خطوة 4.3.2.1.8.2
أخرِج العامل من .
خطوة 4.3.2.1.8.3
ألغِ العامل المشترك.
خطوة 4.3.2.1.8.4
أعِد كتابة العبارة.
خطوة 4.3.2.1.9
اضرب في .
خطوة 4.3.2.2
الإجابة النهائية هي .
خطوة 4.4
النقطة التي تم إيجادها بالتعويض بـ في هي . ويمكن أن تكون هذه النقطة نقطة انقلاب.
خطوة 4.5
حدد النقاط التي يمكن أن تكون نقاط انقلاب.
خطوة 5
قسّم إلى فترات حول النقاط التي من المحتمل أن تكون نقاط انقلاب.
خطوة 6
عوّض بقيمة من الفترة في المشتق الثاني لتحديد ما إذا كان يتزايد أم يتناقص.
انقر لعرض المزيد من الخطوات...
خطوة 6.1
استبدِل المتغير بـ في العبارة.
خطوة 6.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.1
اضرب في .
خطوة 6.2.2
الإجابة النهائية هي .
خطوة 6.3
في ، المشتق الثاني هو . نظرًا إلى أن هذا موجب، فإن المشتق الثاني يتزايد على مدى الفترة .
تزايد خلال نظرًا إلى أن
تزايد خلال نظرًا إلى أن
خطوة 7
عوّض بقيمة من الفترة في المشتق الثاني لتحديد ما إذا كان يتزايد أم يتناقص.
انقر لعرض المزيد من الخطوات...
خطوة 7.1
استبدِل المتغير بـ في العبارة.
خطوة 7.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 7.2.1
اضرب في .
خطوة 7.2.2
الإجابة النهائية هي .
خطوة 7.3
المشتق الثاني عند يساوي . وبما أنه سالب، فإن المشتق الثاني يتناقص خلال الفترة
تناقص خلال حيث إن
تناقص خلال حيث إن
خطوة 8
عوّض بقيمة من الفترة في المشتق الثاني لتحديد ما إذا كان يتزايد أم يتناقص.
انقر لعرض المزيد من الخطوات...
خطوة 8.1
استبدِل المتغير بـ في العبارة.
خطوة 8.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 8.2.1
اضرب في .
خطوة 8.2.2
الإجابة النهائية هي .
خطوة 8.3
في ، المشتق الثاني هو . نظرًا إلى أن هذا موجب، فإن المشتق الثاني يتزايد على مدى الفترة .
تزايد خلال نظرًا إلى أن
تزايد خلال نظرًا إلى أن
خطوة 9
نقطة الانقلاب هي نقطة على منحنى يغيّر التقعر عندها العلامة من موجب إلى سالب أو من سالب إلى موجب. نقاط الانقلاب في هذه الحالة هي .
خطوة 10