حساب التفاضل والتكامل الأمثلة

افصل بتحليل الكسر إلى أجزاء (x^4-2x^3+x^2+3x-1)/(x^2-2x+1)
خطوة 1
اقسِم باستخدام قسمة متعددات الحدود المطولة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
عيّن متعددات الحدود التي ستتم قسمتها. وفي حالة عدم وجود حد لكل أُس، أدخل حدًا واحدًا بقيمة .
-+-++-
خطوة 1.2
اقسِم الحد ذا أعلى رتبة في المقسوم على الحد ذي أعلى رتبة في المقسوم عليه .
-+-++-
خطوة 1.3
اضرب حد ناتج القسمة الجديد في المقسوم عليه.
-+-++-
+-+
خطوة 1.4
يلزم طرح العبارة من المقسوم، لذا غيّر جميع العلامات في
-+-++-
-+-
خطوة 1.5
بعد تغيير العلامات، أضف المقسوم الأخير من متعدد الحدود المضروب فيه لإيجاد المقسوم الجديد.
-+-++-
-+-
خطوة 1.6
أخرِج الحدود التالية من المقسوم الأصلي لأسفل نحو المقسوم الحالي.
-+-++-
-+-
+-
خطوة 1.7
الإجابة النهائية هي ناتج القسمة زائد الباقي على المقسوم عليه.
خطوة 2
فكّ الكسر واضرب في القاسم المشترك.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
حلّل إلى عوامل باستخدام قاعدة المربع الكامل.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1
أعِد كتابة بالصيغة .
خطوة 2.1.2
تحقق من أن الحد الأوسط يساوي ضعف حاصل ضرب الأعداد المربعة في الحد الأول والحد الثالث.
خطوة 2.1.3
أعِد كتابة متعدد الحدود.
خطوة 2.1.4
حلّل إلى عوامل باستخدام قاعدة ثلاثي حدود المربع الكامل ، حيث و.
خطوة 2.2
أنشئ كسرًا جديدًا لكل عامل في القاسم باستخدام العامل كقاسم، وقيمة غير معروفة كبسط الكسر. ونظرًا إلى أن العامل في القاسم خطي، ضع متغيرًا واحدًا في مكانه .
خطوة 2.3
أنشئ كسرًا جديدًا لكل عامل في القاسم باستخدام العامل كقاسم، وقيمة غير معروفة كبسط الكسر. ونظرًا إلى أن العامل في القاسم خطي، ضع متغيرًا واحدًا في مكانه .
خطوة 2.4
اضرب كل كسر في المعادلة في قاسم العبارة الأصلية. في هذه الحالة، القاسم يساوي .
خطوة 2.5
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 2.5.1
ألغِ العامل المشترك.
خطوة 2.5.2
اقسِم على .
خطوة 2.6
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 2.6.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 2.6.1.1
ألغِ العامل المشترك.
خطوة 2.6.1.2
اقسِم على .
خطوة 2.6.2
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 2.6.2.1
أخرِج العامل من .
خطوة 2.6.2.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 2.6.2.2.1
اضرب في .
خطوة 2.6.2.2.2
ألغِ العامل المشترك.
خطوة 2.6.2.2.3
أعِد كتابة العبارة.
خطوة 2.6.2.2.4
اقسِم على .
خطوة 2.6.3
طبّق خاصية التوزيع.
خطوة 2.6.4
انقُل إلى يسار .
خطوة 2.6.5
أعِد كتابة بالصيغة .
خطوة 2.7
أعِد ترتيب و.
خطوة 3
أنشئ معادلات لمتغيرات الكسور الجزئية واستخدمها لتعيين سلسلة معادلات.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
أنشئ معادلة لمتغيرات الكسر الجزئي عن طريق معادلة معاملات من كل متعادل. ولكي تكون المعادلة متساوية، يجب أن تكون المعاملات المتكافئة في كل متعادل متساوية.
خطوة 3.2
أنشئ معادلة لمتغيرات الكسر الجزئي عن طريق معادلة معاملات الحدود التي لا تتضمن . ولكي تكون المعادلة متساوية، يجب أن تكون المعاملات المتكافئة في كل متعادل متساوية.
خطوة 3.3
عيّن سلسلة المعادلات لإيجاد معاملات الكسور الجزئية.
خطوة 4
أوجِد حل سلسلة المعادلات.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
أعِد كتابة المعادلة في صورة .
خطوة 4.2
استبدِل كافة حالات حدوث بـ في كل معادلة.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1
استبدِل كافة حالات حدوث في بـ .
خطوة 4.2.2
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.2.1
اضرب في .
خطوة 4.3
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 4.3.1
أعِد كتابة المعادلة في صورة .
خطوة 4.3.2
انقُل كل الحدود التي لا تحتوي على إلى المتعادل الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.2.1
أضف إلى كلا المتعادلين.
خطوة 4.3.2.2
أضف و.
خطوة 4.4
أوجِد حل سلسلة المعادلات.
خطوة 4.5
اسرِد جميع الحلول.
خطوة 5
استبدِل كل معامل من معاملات الكسور الجزئية في بالقيم التي تم إيجادها لـ و.