حساب التفاضل والتكامل الأمثلة

أوجد النقاط الحرجة f(x)=x^2 اللوغاريتم الطبيعي لـ 3x+6
خطوة 1
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.2
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.1
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 1.1.2.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 1.1.2.2.2
مشتق بالنسبة إلى يساوي .
خطوة 1.1.2.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 1.1.2.3
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.2.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.2.5
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.2.6
اضرب في .
خطوة 1.1.2.7
اجمع و.
خطوة 1.1.2.8
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.8.1
ألغِ العامل المشترك.
خطوة 1.1.2.8.2
أعِد كتابة العبارة.
خطوة 1.1.2.9
اجمع و.
خطوة 1.1.2.10
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.10.1
أخرِج العامل من .
خطوة 1.1.2.10.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.10.2.1
ارفع إلى القوة .
خطوة 1.1.2.10.2.2
أخرِج العامل من .
خطوة 1.1.2.10.2.3
ألغِ العامل المشترك.
خطوة 1.1.2.10.2.4
أعِد كتابة العبارة.
خطوة 1.1.2.10.2.5
اقسِم على .
خطوة 1.1.3
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.4
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.4.1
أضف و.
خطوة 1.1.4.2
أعِد ترتيب الحدود.
خطوة 1.2
المشتق الأول لـ بالنسبة إلى هو .
خطوة 2
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ ثم أوجِد حل المعادلة .
انقر لعرض المزيد من الخطوات...
خطوة 2.1
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ .
خطوة 2.2
اطرح من كلا المتعادلين.
خطوة 2.3
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
اقسِم كل حد في على .
خطوة 2.3.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.2.1.1
ألغِ العامل المشترك.
خطوة 2.3.2.1.2
أعِد كتابة العبارة.
خطوة 2.3.2.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.2.2.1
ألغِ العامل المشترك.
خطوة 2.3.2.2.2
اقسِم على .
خطوة 2.3.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.3.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.3.1.1
ألغِ العامل المشترك.
خطوة 2.3.3.1.2
أعِد كتابة العبارة.
خطوة 2.3.3.2
انقُل السالب أمام الكسر.
خطوة 2.4
لإيجاد قيمة ، أعِد كتابة المعادلة باستخدام خصائص اللوغاريتمات.
خطوة 2.5
أعِد كتابة بالصيغة الأُسية باستخدام تعريف اللوغاريتم. إذا كان و عددين حقيقيين موجبين وكان ، إذن تكافئ .
خطوة 2.6
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.6.1
أعِد كتابة المعادلة في صورة .
خطوة 2.6.2
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.6.2.1
اقسِم كل حد في على .
خطوة 2.6.2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.6.2.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 2.6.2.2.1.1
ألغِ العامل المشترك.
خطوة 2.6.2.2.1.2
اقسِم على .
خطوة 2.6.2.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 2.6.2.3.1
انقُل إلى القاسم باستخدام قاعدة الأُسس السالبة .
خطوة 3
أوجِد القيم التي يكون عندها المشتق غير معرّف.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
عيّن قيمة المتغير المستقل في بحيث تصبح أصغر من أو تساوي لإيجاد الموضع الذي تكون فيه العبارة غير معرّفة.
خطوة 3.2
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1
اقسِم كل حد في على .
خطوة 3.2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.2.1.1
ألغِ العامل المشترك.
خطوة 3.2.2.1.2
اقسِم على .
خطوة 3.2.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.3.1
اقسِم على .
خطوة 3.3
تصبح المعادلة غير معرّفة عندما يكون القاسم مساويًا لـ ، أو عندما يكون المتغير المستقل للجذر التربيعي أصغر من ، أو عندما يكون المتغير المستقل للوغاريتم أصغر من أو يساوي .
خطوة 4
احسِب قيمة عند كل قيمة يكون عندها المشتق مساويًا لـ أو غير معرّف.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
احسِب القيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 4.1.1
عوّض بقيمة التي تساوي .
خطوة 4.1.2
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.2.1
استخدِم قاعدة القوة لتوزيع الأُس.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.2.1.1
طبّق قاعدة الضرب على .
خطوة 4.1.2.1.2
طبّق قاعدة الضرب على .
خطوة 4.1.2.2
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 4.1.2.3
بسّط القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.2.3.1
ارفع إلى القوة .
خطوة 4.1.2.3.2
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 4.1.2.3.2.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 4.1.2.3.2.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.1.2.3.2.2.1
ألغِ العامل المشترك.
خطوة 4.1.2.3.2.2.2
أعِد كتابة العبارة.
خطوة 4.1.2.3.3
بسّط.
خطوة 4.1.2.4
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.1.2.4.1
ألغِ العامل المشترك.
خطوة 4.1.2.4.2
أعِد كتابة العبارة.
خطوة 4.1.2.5
انقُل إلى بسط الكسر باستخدام قاعدة الأُسس السالبة .
خطوة 4.1.2.6
وسّع بنقل خارج اللوغاريتم.
خطوة 4.1.2.7
اللوغاريتم الطبيعي لـ يساوي .
خطوة 4.1.2.8
اضرب في .
خطوة 4.1.2.9
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 4.1.2.9.1
اضرب في .
خطوة 4.1.2.9.2
اضرب في .
خطوة 4.2
احسِب القيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1
عوّض بقيمة التي تساوي .
خطوة 4.2.2
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.2.1.1
ينتج عن رفع إلى أي قوة موجبة.
خطوة 4.2.2.1.2
أعِد كتابة بالصيغة .
خطوة 4.2.2.1.3
اللوغاريتم الطبيعي للصفر يساوي قيمة غير معرّفة.
غير معرّف
خطوة 4.2.2.2
اللوغاريتم الطبيعي للصفر يساوي قيمة غير معرّفة.
غير معرّف
غير معرّف
غير معرّف
خطوة 4.3
اسرِد جميع النقاط.
خطوة 5