حساب التفاضل والتكامل الأمثلة

أوجد النقاط الحرجة (x^2-2x+1)/x
خطوة 1
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1
أوجِد المشتقة باستخدام قاعدة القسمة التي تنص على أن هو حيث و.
خطوة 1.1.2
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.2.3
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.2.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.2.5
اضرب في .
خطوة 1.1.2.6
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.2.7
أضف و.
خطوة 1.1.2.8
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.2.9
اضرب في .
خطوة 1.1.3
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.3.1
طبّق خاصية التوزيع.
خطوة 1.1.3.2
طبّق خاصية التوزيع.
خطوة 1.1.3.3
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.3.3.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.3.3.1.1
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 1.1.3.3.1.2
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.3.3.1.2.1
انقُل .
خطوة 1.1.3.3.1.2.2
اضرب في .
خطوة 1.1.3.3.1.3
انقُل إلى يسار .
خطوة 1.1.3.3.1.4
اضرب في .
خطوة 1.1.3.3.1.5
اضرب في .
خطوة 1.1.3.3.2
جمّع الحدود المتعاكسة في .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.3.3.2.1
أضف و.
خطوة 1.1.3.3.2.2
أضف و.
خطوة 1.1.3.3.3
اطرح من .
خطوة 1.1.3.4
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.3.4.1
أعِد كتابة بالصيغة .
خطوة 1.1.3.4.2
بما أن كلا الحدّين هما مربعان كاملان، حلّل إلى عوامل باستخدام قاعدة الفرق بين مربعين، حيث و.
خطوة 1.2
المشتق الأول لـ بالنسبة إلى هو .
خطوة 2
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ ثم أوجِد حل المعادلة .
انقر لعرض المزيد من الخطوات...
خطوة 2.1
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ .
خطوة 2.2
عيّن قيمة بسط الكسر بحيث تصبح مساوية لصفر.
خطوة 2.3
أوجِد قيمة في المعادلة.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 2.3.2
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.2.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.3.2.2
اطرح من كلا المتعادلين.
خطوة 2.3.3
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.3.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.3.3.2
أضف إلى كلا المتعادلين.
خطوة 2.3.4
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 3
أوجِد القيم التي يكون عندها المشتق غير معرّف.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
عيّن قيمة القاسم في بحيث تصبح مساوية لـ لإيجاد الموضع الذي تكون فيه العبارة غير معرّفة.
خطوة 3.2
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1
خُذ الجذر المحدد لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
خطوة 3.2.2
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.2.1
أعِد كتابة بالصيغة .
خطوة 3.2.2.2
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
خطوة 3.2.2.3
زائد أو ناقص يساوي .
خطوة 4
احسِب قيمة عند كل قيمة يكون عندها المشتق مساويًا لـ أو غير معرّف.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
احسِب القيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 4.1.1
عوّض بقيمة التي تساوي .
خطوة 4.1.2
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.2.1
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.2.1.1
انقُل العدد سالب واحد من قاسم .
خطوة 4.1.2.1.2
أعِد كتابة بالصيغة .
خطوة 4.1.2.2
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.2.2.1
ارفع إلى القوة .
خطوة 4.1.2.2.2
اضرب في .
خطوة 4.1.2.3
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.2.3.1
أضف و.
خطوة 4.1.2.3.2
أضف و.
خطوة 4.1.2.3.3
اضرب في .
خطوة 4.2
احسِب القيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1
عوّض بقيمة التي تساوي .
خطوة 4.2.2
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.2.1
اقسِم على .
خطوة 4.2.2.2
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.2.2.1
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 4.2.2.2.2
اضرب في .
خطوة 4.2.2.3
بسّط عن طريق الجمع والطرح.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.2.3.1
اطرح من .
خطوة 4.2.2.3.2
أضف و.
خطوة 4.3
احسِب القيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 4.3.1
عوّض بقيمة التي تساوي .
خطوة 4.3.2
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
غير معرّف
خطوة 4.4
اسرِد جميع النقاط.
خطوة 5