حساب التفاضل والتكامل الأمثلة

أوجد نقاط الانعطاف 2cos(x)+cos(x)^2
خطوة 1
اكتب في صورة دالة.
خطوة 2
أوجِد المشتق الثاني.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.1.2
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.1.2.2
مشتق بالنسبة إلى يساوي .
خطوة 2.1.2.3
اضرب في .
خطوة 2.1.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.1.3.1
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.3.1.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 2.1.3.1.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.1.3.1.3
استبدِل كافة حالات حدوث بـ .
خطوة 2.1.3.2
مشتق بالنسبة إلى يساوي .
خطوة 2.1.3.3
اضرب في .
خطوة 2.1.4
أعِد ترتيب الحدود.
خطوة 2.2
أوجِد المشتق الثاني.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.2.2
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.2.2.2
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 2.2.2.3
مشتق بالنسبة إلى يساوي .
خطوة 2.2.2.4
مشتق بالنسبة إلى يساوي .
خطوة 2.2.2.5
ارفع إلى القوة .
خطوة 2.2.2.6
ارفع إلى القوة .
خطوة 2.2.2.7
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 2.2.2.8
أضف و.
خطوة 2.2.2.9
ارفع إلى القوة .
خطوة 2.2.2.10
ارفع إلى القوة .
خطوة 2.2.2.11
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 2.2.2.12
أضف و.
خطوة 2.2.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.2.3.2
مشتق بالنسبة إلى يساوي .
خطوة 2.2.4
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.4.1
طبّق خاصية التوزيع.
خطوة 2.2.4.2
اضرب في .
خطوة 2.3
المشتق الثاني لـ بالنسبة إلى هو .
خطوة 3
عيّن قيمة المشتق الثاني بحيث تصبح مساوية لـ ثم حل المعادلة .
انقر لعرض المزيد من الخطوات...
خطوة 3.1
عيّن قيمة المشتق الثاني بحيث تصبح مساوية لـ .
خطوة 3.2
مثّل كل متعادل بيانيًا. الحل هو قيمة x لنقطة التقاطع.
، لأي عدد صحيح
، لأي عدد صحيح
خطوة 4
أوجِد النقاط التي يكون فيها المشتق الثاني هو .
انقر لعرض المزيد من الخطوات...
خطوة 4.1
عوّض بقيمة في لإيجاد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 4.1.1
استبدِل المتغير بـ في العبارة.
خطوة 4.1.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.2.1.1
القيمة الدقيقة لـ هي .
خطوة 4.1.2.1.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.1.2.1.2.1
ألغِ العامل المشترك.
خطوة 4.1.2.1.2.2
أعِد كتابة العبارة.
خطوة 4.1.2.1.3
القيمة الدقيقة لـ هي .
خطوة 4.1.2.1.4
طبّق قاعدة الضرب على .
خطوة 4.1.2.1.5
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 4.1.2.1.6
ارفع إلى القوة .
خطوة 4.1.2.2
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.2.2.1
اكتب في صورة كسر ذي قاسم مشترك.
خطوة 4.1.2.2.2
اجمع البسوط على القاسم المشترك.
خطوة 4.1.2.2.3
أضف و.
خطوة 4.1.2.3
الإجابة النهائية هي .
خطوة 4.2
النقطة التي تم إيجادها بالتعويض بـ في هي . ويمكن أن تكون هذه النقطة نقطة انقلاب.
خطوة 5
قسّم إلى فترات حول النقاط التي من المحتمل أن تكون نقاط انقلاب.
خطوة 6
عوّض بقيمة من الفترة في المشتق الثاني لتحديد ما إذا كان يتزايد أم يتناقص.
انقر لعرض المزيد من الخطوات...
خطوة 6.1
استبدِل المتغير بـ في العبارة.
خطوة 6.2
الإجابة النهائية هي .
خطوة 6.3
المشتق الثاني عند يساوي . وبما أنه سالب، فإن المشتق الثاني يتناقص خلال الفترة
تناقص خلال حيث إن
تناقص خلال حيث إن
خطوة 7
عوّض بقيمة من الفترة في المشتق الثاني لتحديد ما إذا كان يتزايد أم يتناقص.
انقر لعرض المزيد من الخطوات...
خطوة 7.1
استبدِل المتغير بـ في العبارة.
خطوة 7.2
الإجابة النهائية هي .
خطوة 7.3
في ، المشتق الثاني هو . نظرًا إلى أن هذا موجب، فإن المشتق الثاني يتزايد على مدى الفترة .
تزايد خلال نظرًا إلى أن
تزايد خلال نظرًا إلى أن
خطوة 8
نقطة الانقلاب هي نقطة على منحنى يغيّر التقعر عندها العلامة من موجب إلى سالب أو من سالب إلى موجب. نقطة الانقلاب في هذه الحالة هي .
خطوة 9