إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
أوجِد المشتق الأول.
خطوة 1.1.1
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 1.1.1.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 1.1.1.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.1.3
استبدِل كافة حالات حدوث بـ .
خطوة 1.1.2
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 1.1.3
اجمع و.
خطوة 1.1.4
اجمع البسوط على القاسم المشترك.
خطوة 1.1.5
بسّط بَسْط الكسر.
خطوة 1.1.5.1
اضرب في .
خطوة 1.1.5.2
اطرح من .
خطوة 1.1.6
اجمع و.
خطوة 1.1.7
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.8
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.9
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.10
بسّط العبارة.
خطوة 1.1.10.1
أضف و.
خطوة 1.1.10.2
اضرب في .
خطوة 1.2
المشتق الأول لـ بالنسبة إلى هو .
خطوة 2
خطوة 2.1
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ .
خطوة 2.2
عيّن قيمة بسط الكسر بحيث تصبح مساوية لصفر.
خطوة 2.3
أوجِد قيمة في المعادلة.
خطوة 2.3.1
اقسِم كل حد في على وبسّط.
خطوة 2.3.1.1
اقسِم كل حد في على .
خطوة 2.3.1.2
بسّط الطرف الأيسر.
خطوة 2.3.1.2.1
ألغِ العامل المشترك.
خطوة 2.3.1.2.2
اقسِم على .
خطوة 2.3.1.3
بسّط الطرف الأيمن.
خطوة 2.3.1.3.1
اقسِم على .
خطوة 2.3.2
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.3.3
أضف إلى كلا المتعادلين.
خطوة 3
خطوة 3.1
نطاق العبارة هو جميع الأعداد الحقيقية ما عدا ما يجعل العبارة غير معرّفة. في هذه الحالة، لا يوجد عدد حقيقي يجعل العبارة غير معرّفة.
خطوة 4
خطوة 4.1
احسِب القيمة في .
خطوة 4.1.1
عوّض بقيمة التي تساوي .
خطوة 4.1.2
بسّط.
خطوة 4.1.2.1
بسّط العبارة.
خطوة 4.1.2.1.1
اطرح من .
خطوة 4.1.2.1.2
أعِد كتابة بالصيغة .
خطوة 4.1.2.1.3
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 4.1.2.2
ألغِ العامل المشترك لـ .
خطوة 4.1.2.2.1
ألغِ العامل المشترك.
خطوة 4.1.2.2.2
أعِد كتابة العبارة.
خطوة 4.1.2.3
ينتج عن رفع إلى أي قوة موجبة.
خطوة 4.2
اسرِد جميع النقاط.
خطوة 5