حساب التفاضل والتكامل الأمثلة

قيّم باستخدام قاعدة لوبيتال النهاية عند اقتراب x من infinity لـ (7x^2)/(x-x^3)
خطوة 1
احسِب قيمة حد بسط الكسر وحد القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
خُذ نهاية بسط الكسر ونهاية القاسم.
خطوة 1.2
النهاية عند ما لا نهاية متعدد حدود معامله الرئيسي موجب تساوي ما لا نهاية.
خطوة 1.3
احسِب قيمة حد القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1
أعِد ترتيب و.
خطوة 1.3.2
النهاية عند اللانهاية لمتعدد حدود معامله الرئيسي سالب تساوي قيمة غير متناهية سالبة.
خطوة 1.3.3
ناتج قسمة ما لا نهاية على ما لا نهاية يساوي قيمة غير معرّفة.
غير معرّف
خطوة 1.4
ناتج قسمة ما لا نهاية على ما لا نهاية يساوي قيمة غير معرّفة.
غير معرّف
خطوة 2
بما أن مكتوبة بصيغة غير معيّنة، طبّق قاعدة لوبيتال. تنص قاعدة لوبيتال على أن نهاية ناتج قسمة الدوال يساوي نهاية ناتج قسمة مشتقاتها.
خطوة 3
أوجِد مشتق بسط الكسر والقاسم.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
أوجِد مشتقة البسط والقاسم.
خطوة 3.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.4
اضرب في .
خطوة 3.5
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.6
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.7
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.7.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.7.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.7.3
اضرب في .
خطوة 3.8
أعِد ترتيب الحدود.
خطوة 4
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 5
اقسِم بسط الكسر والقاسم على أعلى قوة لـ في القاسم، وهي .
خطوة 6
احسِب قيمة النهاية.
انقر لعرض المزيد من الخطوات...
خطوة 6.1
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 6.1.1
ارفع إلى القوة .
خطوة 6.1.2
أخرِج العامل من .
خطوة 6.1.3
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 6.1.3.1
أخرِج العامل من .
خطوة 6.1.3.2
ألغِ العامل المشترك.
خطوة 6.1.3.3
أعِد كتابة العبارة.
خطوة 6.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 6.2.1
ألغِ العامل المشترك.
خطوة 6.2.2
اقسِم على .
خطوة 6.3
قسّم النهاية بتطبيق قاعدة قسمة النهايات على النهاية بينما يقترب من .
خطوة 7
بما أن بسط الكسر يقترب من عدد حقيقي بينما يُعد قاسمه غير محدود، إذن الكسر يقترب من .
خطوة 8
احسِب قيمة النهاية.
انقر لعرض المزيد من الخطوات...
خطوة 8.1
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 8.2
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 9
بما أن بسط الكسر يقترب من عدد حقيقي بينما يُعد قاسمه غير محدود، إذن الكسر يقترب من .
خطوة 10
بسّط الإجابة.
انقر لعرض المزيد من الخطوات...
خطوة 10.1
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 10.1.1
أخرِج العامل من .
خطوة 10.1.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 10.1.2.1
أخرِج العامل من .
خطوة 10.1.2.2
أخرِج العامل من .
خطوة 10.1.2.3
أخرِج العامل من .
خطوة 10.1.2.4
ألغِ العامل المشترك.
خطوة 10.1.2.5
أعِد كتابة العبارة.
خطوة 10.2
أضف و.
خطوة 10.3
اقسِم على .
خطوة 10.4
اضرب في .