إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
اكتب في صورة دالة.
خطوة 2
خطوة 2.1
أوجِد المشتق الأول.
خطوة 2.1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.1.2
احسِب قيمة .
خطوة 2.1.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.1.2.3
اضرب في .
خطوة 2.1.3
احسِب قيمة .
خطوة 2.1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.1.3.2
مشتق بالنسبة إلى يساوي .
خطوة 2.1.3.3
اضرب في .
خطوة 2.2
المشتق الأول لـ بالنسبة إلى هو .
خطوة 3
خطوة 3.1
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ .
خطوة 3.2
اطرح من كلا المتعادلين.
خطوة 3.3
اقسِم كل حد في على وبسّط.
خطوة 3.3.1
اقسِم كل حد في على .
خطوة 3.3.2
بسّط الطرف الأيسر.
خطوة 3.3.2.1
ألغِ العامل المشترك لـ .
خطوة 3.3.2.1.1
ألغِ العامل المشترك.
خطوة 3.3.2.1.2
اقسِم على .
خطوة 3.3.3
بسّط الطرف الأيمن.
خطوة 3.3.3.1
اقسِم على .
خطوة 3.4
خُذ الجيب العكسي لكلا المتعادلين لاستخراج من داخل الجيب.
خطوة 3.5
بسّط الطرف الأيمن.
خطوة 3.5.1
القيمة الدقيقة لـ هي .
خطوة 3.6
دالة الجيب سالبة في الربعين الثالث والرابع. لإيجاد الحل الثاني، اطرح الحل من ، لإيجاد زاوية المرجع. وبعد ذلك، اجمع زاوية المرجع المذكورة مع لإيجاد الحل في الربع الثالث.
خطوة 3.7
بسّط العبارة لإيجاد الحل الثاني.
خطوة 3.7.1
اطرح من .
خطوة 3.7.2
الزاوية الناتجة لـ موجبة وأصغر من ومشتركة النهاية مع .
خطوة 3.8
أوجِد فترة .
خطوة 3.8.1
يمكن حساب فترة الدالة باستخدام .
خطوة 3.8.2
استبدِل بـ في القاعدة للفترة.
خطوة 3.8.3
القيمة المطلقة للعدد هي المسافة بين العدد والصفر. المسافة بين و تساوي .
خطوة 3.8.4
اقسِم على .
خطوة 3.9
اجمع مع كل زاوية سالبة لإيجاد الزوايا الموجبة.
خطوة 3.9.1
اجمع مع لإيجاد الزاوية الموجبة.
خطوة 3.9.2
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 3.9.3
اجمع الكسور.
خطوة 3.9.3.1
اجمع و.
خطوة 3.9.3.2
اجمع البسوط على القاسم المشترك.
خطوة 3.9.4
بسّط بَسْط الكسر.
خطوة 3.9.4.1
اضرب في .
خطوة 3.9.4.2
اطرح من .
خطوة 3.9.5
اسرِد الزوايا الجديدة.
خطوة 3.10
فترة دالة هي ، لذا تتكرر القيم كل راديان في كلا الاتجاهين.
، لأي عدد صحيح
خطوة 3.11
وحّد الإجابات.
، لأي عدد صحيح
، لأي عدد صحيح
خطوة 4
القيم التي تجعل المشتق مساويًا لـ هي .
خطوة 5
بعد إيجاد النقطة التي تجعل المشتق مساويًا لـ أو غير معرف، تكون الفترة اللازمة للتحقق من أين تتزايد وأين تتناقص هو .
خطوة 6
خطوة 6.1
استبدِل المتغير بـ في العبارة.
خطوة 6.2
الإجابة النهائية هي .
خطوة 6.3
بسّط.
خطوة 6.4
المشتق في هو . نظرًا إلى أن هذا سالب، فإن الدالة تتناقص خلال .
تناقص خلال حيث إن
تناقص خلال حيث إن
خطوة 7
خطوة 7.1
استبدِل المتغير بـ في العبارة.
خطوة 7.2
الإجابة النهائية هي .
خطوة 7.3
بسّط.
خطوة 7.4
المشتق في هو . نظرًا إلى أن هذا موجب، فإن الدالة تتزايد خلال .
تزايد خلال نظرًا إلى أن
تزايد خلال نظرًا إلى أن
خطوة 8
اسرِد الفترات التي تتزايد الدالة وتتناقص فيها.
تزايد خلال:
تناقص خلال:
خطوة 9