إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
أوجِد المشتق الأول.
خطوة 1.1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.2
احسِب قيمة .
خطوة 1.1.2.1
أعِد كتابة بالصيغة .
خطوة 1.1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.3
احسِب قيمة .
خطوة 1.1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.3.2
مشتق بالنسبة إلى يساوي .
خطوة 1.1.4
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
خطوة 1.1.5
أعِد ترتيب الحدود.
خطوة 1.2
المشتق الأول لـ بالنسبة إلى هو .
خطوة 2
خطوة 2.1
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ .
خطوة 2.2
أوجِد القاسم المشترك الأصغر للحدود في المعادلة.
خطوة 2.2.1
يُعد إيجاد القاسم المشترك الأصغر لقائمة القيم بمثابة إيجاد المضاعف المشترك الأصغر لقواسم تلك القيم.
خطوة 2.2.2
بما أن تحتوي على أعداد ومتغيرات على حدٍّ سواء، فهناك خطوتان لإيجاد المضاعف المشترك الأصغر. أوجِد المضاعف المشترك الأصغر للجزء العددي ثم أوجِد المضاعف المشترك الأصغر للجزء المتغير.
خطوة 2.2.3
المضاعف المشترك الأصغر هو أصغر عدد موجب يمكن قسمته على جميع الأعداد بالتساوي.
1. اكتب قائمة العوامل الأساسية لكل عدد.
2. اضرب كل عامل في أكبر عدد من مرات ظهوره في أي رقم.
خطوة 2.2.4
العدد ليس عددًا أوليًا لأن له عامل موجب واحد فقط، وهو العدد نفسه.
ليس أوليًا
خطوة 2.2.5
المضاعف المشترك الأصغر لـ هو حاصل ضرب كل العوامل الأساسية في أكبر عدد من المرات التي تظهر فيها في أي من العددين.
خطوة 2.2.6
عامل هو نفسها.
تحدث بمعدل من المرات.
خطوة 2.2.7
عوامل هي ، والتي تساوي حاصل ضرب في بعضها بمعدل من المرات.
تحدث بمعدل من المرات.
خطوة 2.2.8
المضاعف المشترك الأصغر لـ هو حاصل ضرب كل العوامل الأساسية في أكبر عدد من المرات التي تظهر فيها في أي من الحدين.
خطوة 2.2.9
اضرب في .
خطوة 2.3
اضرب كل حد في في لحذف الكسور.
خطوة 2.3.1
اضرب كل حد في في .
خطوة 2.3.2
بسّط الطرف الأيسر.
خطوة 2.3.2.1
بسّط كل حد.
خطوة 2.3.2.1.1
ألغِ العامل المشترك لـ .
خطوة 2.3.2.1.1.1
انقُل السالب الرئيسي في إلى بسط الكسر.
خطوة 2.3.2.1.1.2
أخرِج العامل من .
خطوة 2.3.2.1.1.3
ألغِ العامل المشترك.
خطوة 2.3.2.1.1.4
أعِد كتابة العبارة.
خطوة 2.3.2.1.2
ألغِ العامل المشترك لـ .
خطوة 2.3.2.1.2.1
انقُل السالب الرئيسي في إلى بسط الكسر.
خطوة 2.3.2.1.2.2
ألغِ العامل المشترك.
خطوة 2.3.2.1.2.3
أعِد كتابة العبارة.
خطوة 2.3.3
بسّط الطرف الأيمن.
خطوة 2.3.3.1
اضرب في .
خطوة 2.4
أوجِد حل المعادلة.
خطوة 2.4.1
أضف إلى كلا المتعادلين.
خطوة 2.4.2
اقسِم كل حد في على وبسّط.
خطوة 2.4.2.1
اقسِم كل حد في على .
خطوة 2.4.2.2
بسّط الطرف الأيسر.
خطوة 2.4.2.2.1
قسمة قيمتين سالبتين على بعضهما البعض ينتج عنها قيمة موجبة.
خطوة 2.4.2.2.2
اقسِم على .
خطوة 2.4.2.3
بسّط الطرف الأيمن.
خطوة 2.4.2.3.1
اقسِم على .
خطوة 3
خطوة 3.1
عيّن قيمة القاسم في بحيث تصبح مساوية لـ لإيجاد الموضع الذي تكون فيه العبارة غير معرّفة.
خطوة 3.2
عيّن قيمة القاسم في بحيث تصبح مساوية لـ لإيجاد الموضع الذي تكون فيه العبارة غير معرّفة.
خطوة 3.3
أوجِد قيمة .
خطوة 3.3.1
خُذ الجذر المحدد لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
خطوة 3.3.2
بسّط .
خطوة 3.3.2.1
أعِد كتابة بالصيغة .
خطوة 3.3.2.2
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
خطوة 3.3.2.3
زائد أو ناقص يساوي .
خطوة 4
خطوة 4.1
احسِب القيمة في .
خطوة 4.1.1
عوّض بقيمة التي تساوي .
خطوة 4.1.2
اللوغاريتم الطبيعي لعدد سالب يساوي قيمة غير معرّفة.
غير معرّف
غير معرّف
خطوة 4.2
احسِب القيمة في .
خطوة 4.2.1
عوّض بقيمة التي تساوي .
خطوة 4.2.2
اللوغاريتم الطبيعي للصفر يساوي قيمة غير معرّفة.
غير معرّف
غير معرّف
غير معرّف
خطوة 5
لا توجد قيم لـ في نطاق المسألة الأصلية بها المشتق يساوي أو غير معرّف.
لم يتم العثور على نقاط حرجة