إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2
خطوة 2.1
اجمع و.
خطوة 2.2
اجمع و.
خطوة 2.3
اضرب في .
خطوة 2.4
اجمع و.
خطوة 2.5
اضرب في بجمع الأُسس.
خطوة 2.5.1
انقُل .
خطوة 2.5.2
اضرب في .
خطوة 2.5.2.1
ارفع إلى القوة .
خطوة 2.5.2.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 2.5.3
أضف و.
خطوة 2.6
اجمع و.
خطوة 2.7
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.8
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.9
اجمع و.
خطوة 2.10
اضرب في .
خطوة 2.11
اجمع و.
خطوة 3
خطوة 3.1
اجمع و.
خطوة 3.2
اجمع و.
خطوة 3.3
اضرب في .
خطوة 3.4
اجمع و.
خطوة 3.5
ارفع إلى القوة .
خطوة 3.6
ارفع إلى القوة .
خطوة 3.7
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 3.8
أضف و.
خطوة 3.9
اجمع و.
خطوة 3.10
احذِف العامل المشترك لـ و.
خطوة 3.10.1
أخرِج العامل من .
خطوة 3.10.2
ألغِ العوامل المشتركة.
خطوة 3.10.2.1
أخرِج العامل من .
خطوة 3.10.2.2
ألغِ العامل المشترك.
خطوة 3.10.2.3
أعِد كتابة العبارة.
خطوة 3.10.2.4
اقسِم على .
خطوة 3.11
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.12
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.13
اضرب في .
خطوة 4
خطوة 4.1
اضرب في .
خطوة 4.2
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 5
أضف و.