إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 3
خطوة 3.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.3
استبدِل كافة حالات حدوث بـ .
خطوة 4
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 5
اجمع و.
خطوة 6
اجمع البسوط على القاسم المشترك.
خطوة 7
خطوة 7.1
اضرب في .
خطوة 7.2
اطرح من .
خطوة 8
خطوة 8.1
اجمع و.
خطوة 8.2
اجمع و.
خطوة 9
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 10
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 11
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 12
اضرب في .
خطوة 13
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 14
خطوة 14.1
أضف و.
خطوة 14.2
اجمع و.
خطوة 14.3
اضرب في .
خطوة 14.4
اجمع و.
خطوة 15
ارفع إلى القوة .
خطوة 16
ارفع إلى القوة .
خطوة 17
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 18
أضف و.
خطوة 19
أخرِج العامل من .
خطوة 20
خطوة 20.1
أخرِج العامل من .
خطوة 20.2
ألغِ العامل المشترك.
خطوة 20.3
أعِد كتابة العبارة.
خطوة 20.4
اقسِم على .
خطوة 21
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 22
اضرب في .
خطوة 23
خطوة 23.1
طبّق خاصية التوزيع.
خطوة 23.2
اضرب في .
خطوة 23.3
أعِد ترتيب الحدود.