إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2
خطوة 2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 2.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 2.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 2.3
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.4
مشتق بالنسبة إلى يساوي .
خطوة 2.5
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.6
أضف و.
خطوة 2.7
اجمع و.
خطوة 2.8
اجمع و.
خطوة 2.9
اجمع و.
خطوة 2.10
اضرب في .
خطوة 3
خطوة 3.1
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 3.1.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 3.1.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.1.3
استبدِل كافة حالات حدوث بـ .
خطوة 3.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.3
مشتق بالنسبة إلى يساوي .
خطوة 3.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 3.5
أضف و.
خطوة 3.6
اجمع و.
خطوة 3.7
اجمع و.
خطوة 4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 5
خطوة 5.1
جمّع الحدود.
خطوة 5.1.1
اجمع البسوط على القاسم المشترك.
خطوة 5.1.2
أضف و.
خطوة 5.2
بسّط بَسْط الكسر.
خطوة 5.2.1
أخرِج العامل من .
خطوة 5.2.1.1
أخرِج العامل من .
خطوة 5.2.1.2
أخرِج العامل من .
خطوة 5.2.1.3
أخرِج العامل من .
خطوة 5.2.2
طبّق خاصية التوزيع.
خطوة 5.2.3
اضرب في .
خطوة 5.2.4
أضف و.