إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
استخدِم لكتابة في صورة .
خطوة 1.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2
خطوة 2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 2.2
مشتق بالنسبة إلى يساوي .
خطوة 2.3
استبدِل كافة حالات حدوث بـ .
خطوة 3
خطوة 3.1
اجمع و.
خطوة 3.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 5
اجمع و.
خطوة 6
اجمع البسوط على القاسم المشترك.
خطوة 7
خطوة 7.1
اضرب في .
خطوة 7.2
اطرح من .
خطوة 8
خطوة 8.1
انقُل السالب أمام الكسر.
خطوة 8.2
اجمع و.
خطوة 8.3
انقُل إلى القاسم باستخدام قاعدة الأُسس السالبة .
خطوة 9
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 10
خطوة 10.1
أضف و.
خطوة 10.2
اضرب في .
خطوة 10.3
أخرِج العامل من .
خطوة 11
خطوة 11.1
أخرِج العامل من .
خطوة 11.2
ألغِ العامل المشترك.
خطوة 11.3
أعِد كتابة العبارة.
خطوة 12
خطوة 12.1
طبّق خاصية التوزيع.
خطوة 12.2
طبّق خاصية التوزيع.
خطوة 12.3
جمّع الحدود.
خطوة 12.3.1
اضرب في بجمع الأُسس.
خطوة 12.3.1.1
انقُل .
خطوة 12.3.1.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 12.3.1.3
اجمع البسوط على القاسم المشترك.
خطوة 12.3.1.4
أضف و.
خطوة 12.3.1.5
اقسِم على .
خطوة 12.3.2
بسّط .
خطوة 12.4
أعِد ترتيب الحدود.
خطوة 12.5
أخرِج العامل من .
خطوة 12.5.1
أخرِج العامل من .
خطوة 12.5.2
أخرِج العامل من .
خطوة 12.5.3
أخرِج العامل من .