حساب التفاضل والتكامل الأمثلة

Hallar la derivada- d/d@VAR P(x)=((4x-8)/(8x-4))
خطوة 1
اختزِل العبارة بحذف العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1
أخرِج العامل من .
خطوة 1.1.2
أخرِج العامل من .
خطوة 1.1.3
أخرِج العامل من .
خطوة 1.1.4
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.4.1
أخرِج العامل من .
خطوة 1.1.4.2
أخرِج العامل من .
خطوة 1.1.4.3
أخرِج العامل من .
خطوة 1.1.4.4
ألغِ العامل المشترك.
خطوة 1.1.4.5
أعِد كتابة العبارة.
خطوة 1.2
احذِف الأقواس.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
أخرِج العامل من .
خطوة 1.2.2
أخرِج العامل من .
خطوة 1.2.3
أخرِج العامل من .
خطوة 1.2.4
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.4.1
أخرِج العامل من .
خطوة 1.2.4.2
أخرِج العامل من .
خطوة 1.2.4.3
أخرِج العامل من .
خطوة 1.2.4.4
ألغِ العامل المشترك.
خطوة 1.2.4.5
أعِد كتابة العبارة.
خطوة 2
أوجِد المشتقة باستخدام قاعدة القسمة التي تنص على أن هو حيث و.
خطوة 3
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.3
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 3.4
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 3.4.1
أضف و.
خطوة 3.4.2
اضرب في .
خطوة 3.5
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.6
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.7
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.8
اضرب في .
خطوة 3.9
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 3.10
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 3.10.1
أضف و.
خطوة 3.10.2
اضرب في .
خطوة 4
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
طبّق خاصية التوزيع.
خطوة 4.2
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1
جمّع الحدود المتعاكسة في .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1.1
اطرح من .
خطوة 4.2.1.2
اطرح من .
خطوة 4.2.2
اضرب في .
خطوة 4.2.3
أضف و.