إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2
خطوة 2.1
أوجِد المشتقة باستخدام قاعدة القسمة التي تنص على أن هو حيث و.
خطوة 2.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.3
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.4
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 2.4.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 2.4.2
مشتق بالنسبة إلى يساوي .
خطوة 2.4.3
استبدِل كافة حالات حدوث بـ .
خطوة 2.5
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.6
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.7
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.8
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.9
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.10
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.11
اضرب في .
خطوة 2.12
انقُل إلى يسار .
خطوة 2.13
أضف و.
خطوة 2.14
انقُل إلى يسار .
خطوة 2.15
اضرب في .
خطوة 2.16
اطرح من .
خطوة 2.17
اضرب في .
خطوة 3
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 4
خطوة 4.1
طبّق خاصية التوزيع.
خطوة 4.2
طبّق خاصية التوزيع.
خطوة 4.3
طبّق خاصية التوزيع.
خطوة 4.4
جمّع الحدود.
خطوة 4.4.1
اضرب في .
خطوة 4.4.2
اضرب في .
خطوة 4.4.3
اضرب في .
خطوة 4.4.4
أضف و.
خطوة 4.5
أعِد ترتيب الحدود.