حساب التفاضل والتكامل الأمثلة

Hallar la derivada- d/d@VAR f(x) = لوغاريتم tan(4x)+ لوغاريتم sec(x^2)
خطوة 1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.1
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 2.1.2
مشتق بالنسبة إلى يساوي .
خطوة 2.1.3
استبدِل كافة حالات حدوث بـ .
خطوة 2.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 2.2.2
مشتق بالنسبة إلى يساوي .
خطوة 2.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 2.3
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.5
اضرب في .
خطوة 2.6
انقُل إلى يسار .
خطوة 2.7
اجمع و.
خطوة 2.8
اجمع و.
خطوة 3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.1
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 3.1.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 3.1.2
مشتق بالنسبة إلى يساوي .
خطوة 3.1.3
استبدِل كافة حالات حدوث بـ .
خطوة 3.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 3.2.2
مشتق بالنسبة إلى يساوي .
خطوة 3.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 3.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.4
اجمع و.
خطوة 3.5
اجمع و.
خطوة 3.6
اجمع و.
خطوة 3.7
اجمع و.
خطوة 3.8
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.8.1
ألغِ العامل المشترك.
خطوة 3.8.2
أعِد كتابة العبارة.
خطوة 4
أعِد ترتيب العوامل في .