حساب التفاضل والتكامل الأمثلة

أوجد القيمة العظمى المحلية والقيمة الصغرى المحلية k(x)=2cos(x)-sin(x)
خطوة 1
أوجِد المشتق الأول للدالة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.2
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.2.2
مشتق بالنسبة إلى يساوي .
خطوة 1.2.3
اضرب في .
خطوة 1.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.3.2
مشتق بالنسبة إلى يساوي .
خطوة 2
أوجِد المشتق الثاني للدالة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.2
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.2.2
مشتق بالنسبة إلى يساوي .
خطوة 2.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.3.2
مشتق بالنسبة إلى يساوي .
خطوة 2.3.3
اضرب في .
خطوة 2.3.4
اضرب في .
خطوة 3
لإيجاد قيم الحد الأقصى المحلي والحد الأدنى المحلي للدالة، عيّن قيمة المشتق لتصبح مساوية لـ وأوجِد الحل.
خطوة 4
اقسِم كل حد في المعادلة على .
خطوة 5
افصِل الكسور.
خطوة 6
حوّل من إلى .
خطوة 7
اقسِم على .
خطوة 8
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 8.1
ألغِ العامل المشترك.
خطوة 8.2
اقسِم على .
خطوة 9
افصِل الكسور.
خطوة 10
حوّل من إلى .
خطوة 11
اقسِم على .
خطوة 12
اضرب في .
خطوة 13
أضف إلى كلا المتعادلين.
خطوة 14
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 14.1
اقسِم كل حد في على .
خطوة 14.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 14.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 14.2.1.1
ألغِ العامل المشترك.
خطوة 14.2.1.2
اقسِم على .
خطوة 14.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 14.3.1
انقُل السالب أمام الكسر.
خطوة 15
خُذ المماس العكسي لكلا المتعادلين لاستخراج من داخل المماس.
خطوة 16
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 16.1
احسِب قيمة .
خطوة 17
دالة المماس سالبة في الربعين الثاني والرابع. لإيجاد الحل الثاني، اطرح زاوية المرجع من لإيجاد الحل في الربع الثالث.
خطوة 18
بسّط العبارة لإيجاد الحل الثاني.
انقر لعرض المزيد من الخطوات...
خطوة 18.1
أضف إلى .
خطوة 18.2
الزاوية الناتجة لـ موجبة ومشتركة النهاية مع .
خطوة 19
حل المعادلة .
خطوة 20
احسِب قيمة المشتق الثاني في . إذا كان المشتق الثاني موجبًا، فإنه إذن الحد الأدنى المحلي. أما إذا كان سالبًا، فإنه إذن الحد الأقصى المحلي.
خطوة 21
هي حد أقصى محلي لأن قيمة المشتقة الثانية سالبة. يُشار إلى ذلك باسم اختبار المشتقة الثانية.
هي حد أقصى محلي
خطوة 22
أوجِد قيمة "ص" عندما تكون .
انقر لعرض المزيد من الخطوات...
خطوة 22.1
استبدِل المتغير بـ في العبارة.
خطوة 22.2
الإجابة النهائية هي .
خطوة 23
احسِب قيمة المشتق الثاني في . إذا كان المشتق الثاني موجبًا، فإنه إذن الحد الأدنى المحلي. أما إذا كان سالبًا، فإنه إذن الحد الأقصى المحلي.
خطوة 24
هي حد أدنى محلي لأن قيمة المشتقة الثانية موجبة. يُشار إلى ذلك باسم اختبار المشتقة الثانية.
هي حد أدنى محلي
خطوة 25
أوجِد قيمة "ص" عندما تكون .
انقر لعرض المزيد من الخطوات...
خطوة 25.1
استبدِل المتغير بـ في العبارة.
خطوة 25.2
الإجابة النهائية هي .
خطوة 26
هذه هي القيم القصوى المحلية لـ .
هي نقطة قصوى محلية
هي نقاط دنيا محلية
خطوة 27