حساب التفاضل والتكامل الأمثلة

أوجد القيمة العظمى المحلية والقيمة الصغرى المحلية y=(1/x)^2
خطوة 1
اكتب في صورة دالة.
خطوة 2
أوجِد المشتق الأول للدالة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 2.1.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.1.3
استبدِل كافة حالات حدوث بـ .
خطوة 2.2
أوجِد المشتقة باستخدام قاعدة القوة.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
اجمع و.
خطوة 2.2.2
أعِد كتابة بالصيغة .
خطوة 2.2.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.2.4
اجمع الكسور.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.4.1
اجمع و.
خطوة 2.2.4.2
انقُل إلى القاسم باستخدام قاعدة الأُسس السالبة .
خطوة 2.3
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
اضرب في .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1.1
ارفع إلى القوة .
خطوة 2.3.1.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 2.3.2
أضف و.
خطوة 3
أوجِد المشتق الثاني للدالة.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.2
طبّق القواعد الأساسية للأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1
أعِد كتابة بالصيغة .
خطوة 3.2.2
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.2.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 3.2.2.2
اضرب في .
خطوة 3.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.4
اضرب في .
خطوة 3.5
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 3.5.1
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
خطوة 3.5.2
اجمع و.
خطوة 4
لإيجاد قيم الحد الأقصى المحلي والحد الأدنى المحلي للدالة، عيّن قيمة المشتق لتصبح مساوية لـ وأوجِد الحل.
خطوة 5
بما أنه لا توجد قيمة لـ تجعل المشتق الأول مساويًا لـ ، إذن لا توجد قيمة قصوى محلية.
لا توجد قيمة قصوى محلية
خطوة 6
لا توجد قيمة قصوى محلية
خطوة 7