حساب التفاضل والتكامل الأمثلة

أوجد القيمة العظمى المحلية والقيمة الصغرى المحلية y=e^(x/5)
خطوة 1
اكتب في صورة دالة.
خطوة 2
أوجِد المشتق الأول للدالة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 2.1.2
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 2.1.3
استبدِل كافة حالات حدوث بـ .
خطوة 2.2
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.2.2
اجمع و.
خطوة 2.2.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.2.4
اضرب في .
خطوة 3
أوجِد المشتق الثاني للدالة.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 3.2.2
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 3.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 3.3
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1
اجمع و.
خطوة 3.3.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.3.3
اجمع الكسور.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.3.1
اضرب في .
خطوة 3.3.3.2
اضرب في .
خطوة 3.3.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.3.5
اضرب في .
خطوة 4
لإيجاد قيم الحد الأقصى المحلي والحد الأدنى المحلي للدالة، عيّن قيمة المشتق لتصبح مساوية لـ وأوجِد الحل.
خطوة 5
بما أنه لا توجد قيمة لـ تجعل المشتق الأول مساويًا لـ ، إذن لا توجد قيمة قصوى محلية.
لا توجد قيمة قصوى محلية
خطوة 6
لا توجد قيمة قصوى محلية
خطوة 7