إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
اكتب في صورة دالة.
خطوة 2
خطوة 2.1
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 2.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 2.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 2.2.2
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 2.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 2.3
أوجِد المشتقة.
خطوة 2.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.3.2
اجمع الكسور.
خطوة 2.3.2.1
اجمع و.
خطوة 2.3.2.2
اجمع و.
خطوة 2.3.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.4
اضرب في .
خطوة 2.3.5
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.6
بسّط العبارة.
خطوة 2.3.6.1
اضرب في .
خطوة 2.3.6.2
أعِد ترتيب العوامل في .
خطوة 3
خطوة 3.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.2
احسِب قيمة .
خطوة 3.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.2.2
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 3.2.3
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 3.2.3.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 3.2.3.2
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 3.2.3.3
استبدِل كافة حالات حدوث بـ .
خطوة 3.2.4
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.2.5
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.2.6
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.2.7
اضرب في .
خطوة 3.2.8
اجمع و.
خطوة 3.2.9
اجمع و.
خطوة 3.2.10
اضرب في .
خطوة 3.3
احسِب قيمة .
خطوة 3.3.1
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 3.3.1.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 3.3.1.2
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 3.3.1.3
استبدِل كافة حالات حدوث بـ .
خطوة 3.3.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.3.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.3.4
اضرب في .
خطوة 3.3.5
اجمع و.
خطوة 3.4
بسّط.
خطوة 3.4.1
طبّق خاصية التوزيع.
خطوة 3.4.2
جمّع الحدود.
خطوة 3.4.2.1
اضرب في .
خطوة 3.4.2.2
اضرب في .
خطوة 3.4.2.3
اجمع و.
خطوة 3.4.2.4
أضف و.
خطوة 3.4.2.5
اجمع و.
خطوة 3.4.2.6
ألغِ العامل المشترك لـ .
خطوة 3.4.2.6.1
ألغِ العامل المشترك.
خطوة 3.4.2.6.2
اقسِم على .
خطوة 4
لإيجاد قيم الحد الأقصى المحلي والحد الأدنى المحلي للدالة، عيّن قيمة المشتق لتصبح مساوية لـ وأوجِد الحل.
خطوة 5
خطوة 5.1
أوجِد المشتق الأول.
خطوة 5.1.1
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 5.1.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 5.1.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 5.1.2.2
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 5.1.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 5.1.3
أوجِد المشتقة.
خطوة 5.1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 5.1.3.2
اجمع الكسور.
خطوة 5.1.3.2.1
اجمع و.
خطوة 5.1.3.2.2
اجمع و.
خطوة 5.1.3.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 5.1.3.4
اضرب في .
خطوة 5.1.3.5
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 5.1.3.6
بسّط العبارة.
خطوة 5.1.3.6.1
اضرب في .
خطوة 5.1.3.6.2
أعِد ترتيب العوامل في .
خطوة 5.2
المشتق الأول لـ بالنسبة إلى هو .
خطوة 6
خطوة 6.1
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ .
خطوة 6.2
أخرِج العامل من .
خطوة 6.2.1
أخرِج العامل من .
خطوة 6.2.2
اضرب في .
خطوة 6.2.3
أخرِج العامل من .
خطوة 6.3
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 6.4
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 6.4.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 6.4.2
أوجِد قيمة في .
خطوة 6.4.2.1
خُذ اللوغاريتم الطبيعي لكلا المتعادلين لحذف المتغير من الأُس.
خطوة 6.4.2.2
لا يمكن حل المعادلة لأن غير معرّفة.
غير معرّف
خطوة 6.4.2.3
لا يوجد حل لـ
لا يوجد حل
لا يوجد حل
لا يوجد حل
خطوة 6.5
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 6.5.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 6.5.2
أوجِد قيمة في .
خطوة 6.5.2.1
اطرح من كلا المتعادلين.
خطوة 6.5.2.2
اضرب كلا المتعادلين في .
خطوة 6.5.2.3
بسّط كلا المتعادلين.
خطوة 6.5.2.3.1
بسّط الطرف الأيسر.
خطوة 6.5.2.3.1.1
ألغِ العامل المشترك لـ .
خطوة 6.5.2.3.1.1.1
ألغِ العامل المشترك.
خطوة 6.5.2.3.1.1.2
أعِد كتابة العبارة.
خطوة 6.5.2.3.2
بسّط الطرف الأيمن.
خطوة 6.5.2.3.2.1
اضرب في .
خطوة 6.6
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 7
خطوة 7.1
نطاق العبارة هو جميع الأعداد الحقيقية ما عدا ما يجعل العبارة غير معرّفة. في هذه الحالة، لا يوجد عدد حقيقي يجعل العبارة غير معرّفة.
خطوة 8
النقاط الحرجة اللازم حساب قيمتها.
خطوة 9
احسِب قيمة المشتق الثاني في . إذا كان المشتق الثاني موجبًا، فإنه إذن الحد الأدنى المحلي. أما إذا كان سالبًا، فإنه إذن الحد الأقصى المحلي.
خطوة 10
خطوة 10.1
بسّط كل حد.
خطوة 10.1.1
انقُل إلى القاسم باستخدام قاعدة الأُسس السالبة .
خطوة 10.1.2
احذِف العامل المشترك لـ و.
خطوة 10.1.2.1
أخرِج العامل من .
خطوة 10.1.2.2
ألغِ العوامل المشتركة.
خطوة 10.1.2.2.1
أخرِج العامل من .
خطوة 10.1.2.2.2
ألغِ العامل المشترك.
خطوة 10.1.2.2.3
أعِد كتابة العبارة.
خطوة 10.1.2.2.4
اقسِم على .
خطوة 10.1.3
احذِف العامل المشترك لـ و.
خطوة 10.1.3.1
أخرِج العامل من .
خطوة 10.1.3.2
ألغِ العوامل المشتركة.
خطوة 10.1.3.2.1
أخرِج العامل من .
خطوة 10.1.3.2.2
ألغِ العامل المشترك.
خطوة 10.1.3.2.3
أعِد كتابة العبارة.
خطوة 10.1.4
بسّط القاسم.
خطوة 10.1.4.1
اضرب في .
خطوة 10.1.4.2
بسّط.
خطوة 10.1.5
انقُل السالب أمام الكسر.
خطوة 10.1.6
اقسِم على .
خطوة 10.1.7
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
خطوة 10.2
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 10.3
اكتب كل عبارة قاسمها المشترك ، بضربها في العامل المناسب للعدد .
خطوة 10.3.1
اضرب في .
خطوة 10.3.2
أعِد ترتيب عوامل .
خطوة 10.4
اجمع البسوط على القاسم المشترك.
خطوة 10.5
أضف و.
خطوة 11
هي حد أدنى محلي لأن قيمة المشتقة الثانية موجبة. يُشار إلى ذلك باسم اختبار المشتقة الثانية.
هي حد أدنى محلي
خطوة 12
خطوة 12.1
استبدِل المتغير بـ في العبارة.
خطوة 12.2
بسّط النتيجة.
خطوة 12.2.1
اقسِم على .
خطوة 12.2.2
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
خطوة 12.2.3
اجمع و.
خطوة 12.2.4
انقُل السالب أمام الكسر.
خطوة 12.2.5
الإجابة النهائية هي .
خطوة 13
هذه هي القيم القصوى المحلية لـ .
هي نقاط دنيا محلية
خطوة 14