حساب التفاضل والتكامل الأمثلة

أوجد متوسط قيمة التابع g(x)=x^2 الجذر التربيعي لـ 1+x^3 , [0,2]
,
خطوة 1
لإيجاد متوسط قيمة الدالة، ينبغي أن تكون الدالة متصلة في الفترة المغلقة . ولمعرفة ما إذا كانت متصلة في أم لا، أوجِد نطاق .
انقر لعرض المزيد من الخطوات...
خطوة 1.1
عيّن قيمة المجذور في بحيث تصبح أكبر من أو تساوي لإيجاد الموضع الذي تكون فيه العبارة معرّفة.
خطوة 1.2
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
اطرح من كلا طرفي المتباينة.
خطوة 1.2.2
أضِف إلى كلا طرفي المتباينة.
خطوة 1.2.3
حوّل المتباينة إلى معادلة.
خطوة 1.2.4
حلّل المتعادل الأيسر إلى عوامل.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.4.1
أعِد كتابة بالصيغة .
خطوة 1.2.4.2
بما أن كلا الحدّين هما مكعبان كاملان، حلّل إلى عوامل باستخدام قاعدة مجموع مكعبين، حيث و.
خطوة 1.2.4.3
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.4.3.1
اضرب في .
خطوة 1.2.4.3.2
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 1.2.5
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 1.2.6
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.6.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 1.2.6.2
اطرح من كلا المتعادلين.
خطوة 1.2.7
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.7.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 1.2.7.2
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.7.2.1
استخدِم الصيغة التربيعية لإيجاد الحلول.
خطوة 1.2.7.2.2
عوّض بقيم و و في الصيغة التربيعية وأوجِد قيمة .
خطوة 1.2.7.2.3
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.7.2.3.1
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.7.2.3.1.1
ارفع إلى القوة .
خطوة 1.2.7.2.3.1.2
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.7.2.3.1.2.1
اضرب في .
خطوة 1.2.7.2.3.1.2.2
اضرب في .
خطوة 1.2.7.2.3.1.3
اطرح من .
خطوة 1.2.7.2.3.1.4
أعِد كتابة بالصيغة .
خطوة 1.2.7.2.3.1.5
أعِد كتابة بالصيغة .
خطوة 1.2.7.2.3.1.6
أعِد كتابة بالصيغة .
خطوة 1.2.7.2.3.2
اضرب في .
خطوة 1.2.7.2.4
بسّط العبارة لإيجاد قيمة الجزء من .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.7.2.4.1
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.7.2.4.1.1
ارفع إلى القوة .
خطوة 1.2.7.2.4.1.2
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.7.2.4.1.2.1
اضرب في .
خطوة 1.2.7.2.4.1.2.2
اضرب في .
خطوة 1.2.7.2.4.1.3
اطرح من .
خطوة 1.2.7.2.4.1.4
أعِد كتابة بالصيغة .
خطوة 1.2.7.2.4.1.5
أعِد كتابة بالصيغة .
خطوة 1.2.7.2.4.1.6
أعِد كتابة بالصيغة .
خطوة 1.2.7.2.4.2
اضرب في .
خطوة 1.2.7.2.4.3
غيّر إلى .
خطوة 1.2.7.2.5
بسّط العبارة لإيجاد قيمة الجزء من .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.7.2.5.1
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.7.2.5.1.1
ارفع إلى القوة .
خطوة 1.2.7.2.5.1.2
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.7.2.5.1.2.1
اضرب في .
خطوة 1.2.7.2.5.1.2.2
اضرب في .
خطوة 1.2.7.2.5.1.3
اطرح من .
خطوة 1.2.7.2.5.1.4
أعِد كتابة بالصيغة .
خطوة 1.2.7.2.5.1.5
أعِد كتابة بالصيغة .
خطوة 1.2.7.2.5.1.6
أعِد كتابة بالصيغة .
خطوة 1.2.7.2.5.2
اضرب في .
خطوة 1.2.7.2.5.3
غيّر إلى .
خطوة 1.2.7.2.6
الإجابة النهائية هي تركيبة من كلا الحلّين.
خطوة 1.2.8
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 1.2.9
يتكون الحل من جميع الفترات الصحيحة.
خطوة 1.3
النطاق هو جميع قيم التي تجعل العبارة معرّفة.
ترميز الفترة:
ترميز بناء المجموعات:
ترميز الفترة:
ترميز بناء المجموعات:
خطوة 2
متصلة على .
متصلة
خطوة 3
يُعرف متوسط قيمة الدالة على مدى الفترة بأنه .
خطوة 4
عوّض بالقيم الفعلية في قاعدة القيمة المتوسطة لدالة.
خطوة 5
لنفترض أن . إذن ، لذا . أعِد الكتابة باستخدام و.
انقر لعرض المزيد من الخطوات...
خطوة 5.1
افترض أن . أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 5.1.1
أوجِد مشتقة .
خطوة 5.1.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 5.1.3
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 5.1.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 5.1.5
أضف و.
خطوة 5.2
عوّض بالنهاية الدنيا عن في .
خطوة 5.3
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 5.3.1
ينتج عن رفع إلى أي قوة موجبة.
خطوة 5.3.2
أضف و.
خطوة 5.4
عوّض بالنهاية العليا عن في .
خطوة 5.5
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 5.5.1
ارفع إلى القوة .
خطوة 5.5.2
أضف و.
خطوة 5.6
ستُستخدم القيم التي تم إيجادها لـ و في حساب قيمة التكامل المحدد.
خطوة 5.7
أعِد كتابة المسألة باستخدام و والنهايات الجديدة للتكامل.
خطوة 6
اجمع و.
خطوة 7
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 8
استخدِم لكتابة في صورة .
خطوة 9
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 10
عوّض وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 10.1
احسِب قيمة في وفي .
خطوة 10.2
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 10.2.1
أعِد كتابة بالصيغة .
خطوة 10.2.2
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 10.2.3
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 10.2.3.1
ألغِ العامل المشترك.
خطوة 10.2.3.2
أعِد كتابة العبارة.
خطوة 10.2.4
ارفع إلى القوة .
خطوة 10.2.5
اجمع و.
خطوة 10.2.6
اضرب في .
خطوة 10.2.7
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 10.2.7.1
أخرِج العامل من .
خطوة 10.2.7.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 10.2.7.2.1
أخرِج العامل من .
خطوة 10.2.7.2.2
ألغِ العامل المشترك.
خطوة 10.2.7.2.3
أعِد كتابة العبارة.
خطوة 10.2.7.2.4
اقسِم على .
خطوة 10.2.8
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 10.2.9
اضرب في .
خطوة 10.2.10
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 10.2.11
اجمع و.
خطوة 10.2.12
اجمع البسوط على القاسم المشترك.
خطوة 10.2.13
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 10.2.13.1
اضرب في .
خطوة 10.2.13.2
اطرح من .
خطوة 10.2.14
اضرب في .
خطوة 10.2.15
اضرب في .
خطوة 11
بسّط القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 11.1
اضرب في .
خطوة 11.2
أضف و.
خطوة 12
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 12.1
أخرِج العامل من .
خطوة 12.2
ألغِ العامل المشترك.
خطوة 12.3
أعِد كتابة العبارة.
خطوة 13